Enhanced chimp hierarchy optimization algorithm with adaptive lens imaging for feature selection in data classification DOI Creative Commons
Zhang Li, Xiaobo Chen

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Март 22, 2024

Abstract Feature selection is a critical component of machine learning and data mining to remove redundant irrelevant features from dataset. The Chimp Optimization Algorithm (CHoA) widely applicable various optimization problems due its low number parameters fast convergence rate. However, CHoA has weak exploration capability tends fall into local optimal solutions in solving the feature process, leading ineffective removal features. To solve this problem, paper proposes Enhanced Hierarchy for adaptive lens imaging (ALI-CHoASH) searching classification subset Specifically, enhance exploitation CHoA, we designed chimp social hierarchy. We employed novel class factor label situation each chimp, enabling effective modelling relationships among individuals. Then, parse chimps’ collaborative behaviours with different classes, introduce other attacking prey autonomous search strategies help individuals approach solution faster. In addition, considering poor diversity groups late iteration, propose an back-learning strategy avoid algorithm falling optimum. Finally, validate improvement ALI-CHoASH capabilities using several high-dimensional datasets. also compare eight state-of-the-art methods accuracy, size, computation time demonstrate superiority.

Язык: Английский

SITW Method: A New Approach to Re-identifying Multi-criteria Weights in Complex Decision Analysis DOI Creative Commons

Bartłmiej Kizielewicz,

Wojciech Sałabun

Spectrum of Mechanical Engineering and Operational Research., Год журнала: 2024, Номер 1(1), С. 215 - 226

Опубликована: Сен. 1, 2024

Multi-Criteria Decision Analysis (MCDA) addresses complex decision-making problems across various fields such as logistics, management, medicine, and sustainability. MCDA tools provide a structured approach to evaluating decisions with multiple conflicting criteria, assisting decision-makers in navigating intricate scenarios. Engaging experts is crucial for identifying multi-criteria models due the diverse aspects of problems. Techniques pairwise comparisons criterion weight assignment are commonly used incorporate expert knowledge into decision models. Criterion allows indicate importance each criterion; however, issues can arise if model parameters lost or become unavailable. To mitigate these issues, techniques like entropy standard deviation determine weights without direct input. In this context, Stochastic Identification Weights (SITW) method utilizes existing assessment samples re-identify obtain that replicate rankings reference model. This study compares information-based methods (Entropy, STD) SITW re-identifying TRI medical function benchmark. The effectiveness evaluated using Spearman's weighted correlation coefficient scenarios alternative numbers. Results provides more significant results than other by leveraging previously alternatives. Future research could explore broader approaches uncertainty ensure comprehensive support contexts.

Язык: Английский

Процитировано

37

SRIME: a strengthened RIME with Latin hypercube sampling and embedded distance-based selection for engineering optimization problems DOI
Rui Zhong, Jun Yu, Chengqi Zhang

и другие.

Neural Computing and Applications, Год журнала: 2024, Номер 36(12), С. 6721 - 6740

Опубликована: Фев. 12, 2024

Язык: Английский

Процитировано

33

Improved forecasting of the compressive strength of ultra‐high‐performance concrete (UHPC) via the CatBoost model optimized with different algorithms DOI Creative Commons
Metin Katlav, Faruk Ergen

Structural Concrete, Год журнала: 2024, Номер unknown

Опубликована: Май 19, 2024

Abstract This paper focuses on the applicability of CatBoost models constructed using various optimization techniques for improved forecasting compressive strength ultra‐high‐performance concrete (UHPC). Phasor particle swarm (PPSO), dwarf mongoose (DMO), and atom search (ASO), which have been very popular recently, are preferred as algorithms. A comprehensive reliable data set is used to develop models, include 785 test results with 15 input features. The performance (PPSO‐CatBoost, DMO‐CatBoost, ASO‐CatBoost) optimized different algorithms thoroughly assessed by means statistical metrics error analysis determine model best capability, this compared obtained from previous studies. In addition, Shapley additive exPlanations (SHAP) ensure interpretability overcome “black box” problem machine learning (ML) models. demonstrate that all outstandingly forecast UHPC. Among these DMO‐CatBoost stands out other in metrics, such high coefficient determination ( R 2 ) values, low root mean squared (RMSE), absolute percentage (MAPE), (MAE) along a smaller ratio. words, RMSE, , MAPE, MAE values training 3.67, 0.993, 0.019, 2.35, respectively, whereas those 6.15, 0.978, 0.038, 4.51. Additionally, ranking optimize hyperparameters follows: DMO > PPSO ASO. On hand, SHAP showed age, fiber dosage, cement dosage significantly influence These findings can guide structural engineers design UHPC, thus assisting them developing strategies improve properties material. Finally, based developed work, graphical user interface has easily UHPC practical applications without additional tools or software.

Язык: Английский

Процитировано

16

Hydrogen Penetration in Textile Industry: A Hybrid Renewable Energy System, Evolution Programming and Feasibility Analysis DOI
Seyyed Shahabaddin Hosseini Dehshiri, Bahar Firoozabadi

Energy, Год журнала: 2025, Номер unknown, С. 134785 - 134785

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Transfer learning framework for modelling the compressive strength of ultra-high performance geopolymer concrete DOI

Ho Anh Thu Nguyen,

Duy Hoang Pham, Anh Tuấn Lê

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 459, С. 139746 - 139746

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Q-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimization DOI Creative Commons
Rui Zhong, Fei Peng, Jun Yu

и другие.

Alexandria Engineering Journal, Год журнала: 2023, Номер 87, С. 148 - 163

Опубликована: Дек. 22, 2023

Vegetation evolution (VEGE) is a newly proposed meta-heuristic algorithm (MA) with excellent exploitation but relatively weak exploration capacity. We thus focus on further balancing the and of VEGE well to improve overall optimization performance. This paper proposes an improved Q-learning based VEGE, we design archive provide variety search strategies, each contains four efficient easy-implemented strategies. In addition, online Q-Learning, as ε-greedy scheme, are employed decision-maker role learn knowledge from past process determine strategy for individual automatically intelligently. numerical experiments, compare our QVEGE eight state-of-the-art MAs including original CEC2020 benchmark functions, twelve engineering problems, wireless sensor networks (WSN) coverage problems. Experimental statistical results confirm that demonstrates significant enhancements stands strong competitor among existing algorithms. The source code publicly available at https://github.com/RuiZhong961230/QVEGE.

Язык: Английский

Процитировано

26

Hybrid remora crayfish optimization for engineering and wireless sensor network coverage optimization DOI
Rui Zhong,

Qinqin Fan,

Chao Zhang

и другие.

Cluster Computing, Год журнала: 2024, Номер 27(7), С. 10141 - 10168

Опубликована: Май 4, 2024

Язык: Английский

Процитировано

13

The artificial intelligence reformation of sustainable building design approach: A systematic review on building design optimization methods using surrogate models DOI Creative Commons
Ibrahim Elwy, Aya Hagishima

Energy and Buildings, Год журнала: 2024, Номер unknown, С. 114769 - 114769

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

12

Developing a data-driven system for grinding process parameter optimization using machine learning and metaheuristic algorithms DOI
Gyeongho Kim, S W Park, Jae Gyeong Choi

и другие.

CIRP journal of manufacturing science and technology, Год журнала: 2024, Номер 51, С. 20 - 35

Опубликована: Апрель 11, 2024

Язык: Английский

Процитировано

11

Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors DOI
Rui Zhong,

Enzhi Zhang,

Masaharu Munetomo

и другие.

The Journal of Supercomputing, Год журнала: 2024, Номер 80(9), С. 12186 - 12217

Опубликована: Фев. 9, 2024

Язык: Английский

Процитировано

10