
Industrial Crops and Products, Год журнала: 2024, Номер 223, С. 120171 - 120171
Опубликована: Дек. 6, 2024
Язык: Английский
Industrial Crops and Products, Год журнала: 2024, Номер 223, С. 120171 - 120171
Опубликована: Дек. 6, 2024
Язык: Английский
TrAC Trends in Analytical Chemistry, Год журнала: 2025, Номер unknown, С. 118243 - 118243
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Arabian Journal of Chemistry, Год журнала: 2025, Номер 0, С. 1 - 9
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Arabian Journal of Chemistry, Год журнала: 2025, Номер 0, С. 1 - 13
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Chinese Journal of Natural Medicines, Год журнала: 2024, Номер 22(10), С. 900 - 913
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
3Chinese Medicine, Год журнала: 2024, Номер 19(1)
Опубликована: Ноя. 14, 2024
Abstract Background Deciphering the in vivo processes of traditional Chinese medicine (TCM) is crucial for identifying new pharmacodynamic substances and drugs. Due to complexity diversity components, investigating exposure, metabolism, disposition remains a major challenge TCM research. In recent years, number non-targeted smart mass-spectrometry (MS) techniques, such as precise-and-thorough background-subtraction (PATBS) metabolomics, have realized intelligent identification components TCM. However, metabolites characterization still largely relies on manual combination with online databases. Results We developed scoring approach based structural similarity minimal mass defect variations between prototypes. The current method integrates three dimensions spectral data including m/z , MS1 MS2, MS2 fragments, which was sequentially analyzed by R-based dataset relevance bridging (MDRB) post-processing technique. MDRB technology constructed component relationship network TCM, significantly improving metabolite efficiency facilitating mapping translational metabolic pathways. By combining PATBS through this technology, we comprehensive strategy identification, analysis vivo. As proof concept, adopted proposed investigate process Semen Armeniacae Amarum (CKXR) mice. Significance currently analytical universally applicable demonstrates its effectiveness analyzing complex TCMs vitro Furthermore, it enables correlation data, providing insights into transformations among sharing same parent nucleus structure. Finally, platform publicly available ( https://github.com/933ZhangDD/MDRB ) accelerating research scientific community. Graphical
Язык: Английский
Процитировано
1Journal of Pharmaceutical Analysis, Год журнала: 2024, Номер unknown, С. 101066 - 101066
Опубликована: Авг. 1, 2024
A strategy combining a tailored database and high-throughput activity screening that discover bioactive metabolites derived from Magnoliae Officinalis Cortex (MOC) was developed implemented to rapidly profile in vivo traditional Chinese medicine (TCM). The possessed four characteristics: 1) consisted of big data-originated reference compound, predicted silico, MOC chemical profile-based pseudomolecular ions. 2) When profiling MOC-derived vivo, attentions were paid not only on prototypes compounds directly compounds, as reported by most papers, but also isomerized the degradation products well their metabolites. 3) Metabolite traceability performed, especially distinguish isomeric prototypes-derived metabolites, phase I other compounds. 4) Molecular docking utilized for molecular dynamic simulation zebrafish model used verification. Using this strategy, 134 swiftly characterized after oral administration rats, several first time. Furthermore, 17 potential active discovered targeting motilin, dopamine D2, serotonin type 4 (5-HT4) receptors, bioactivities verified using constipation model. This study extends application mass spectrometry (MS) TCM-derived which will help pharmacologists potent complex matrix.
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Окт. 21, 2024
Язык: Английский
Процитировано
0Food Reviews International, Год журнала: 2024, Номер unknown, С. 1 - 30
Опубликована: Ноя. 24, 2024
Understanding food metabolite patterns is crucial for various aspects of science, including quality assessment and safety evaluation. This comprehensive review explores the integration machine learning metabolomics technologies predicting vegetable patterns. The significance in analyzing omics data highlighted. Various techniques, supervised, unsupervised, deep algorithms, are examined their efficacy metabolites. Challenges integrating learning, such as preprocessing, dimensionality reduction, model interpretability, addressed, alongside potential solutions. Applications patterns, authentication, assessment, personalized nutrition, flavor profiling, explored through case studies. Future perspectives highlight emerging trends, applications precision agriculture industry, need advancements to facilitate widespread adoption.
Язык: Английский
Процитировано
0International Journal of Knowledge and Systems Science, Год журнала: 2024, Номер 15(1), С. 1 - 20
Опубликована: Дек. 20, 2024
This paper presents a comprehensive approach to the detection and prevention of cheating in online exams using AI. The authors employ various technical solutions monitor proctors throughout all stages exam: before, during, after. To address formulations ensure continuous expansion database, rely on fast convolutional neural network (CNN) that utilizes full-scope pattern matching algorithm (FSPM) enhance ability match fingerprint formats descriptive cryptography. anticipate reliable across complete image set through utilization deep-learning (DL) symbols. Furthermore, demonstrate solving image-matching problems does not necessitate tool training data, which is typically required for such problems. Thanks highly parallelizable nature these tasks, provide an efficient method with minimal computational cost during test time detect some at School Computer Science Danang University Technology (SCS-DTU) University, Vietnam.
Язык: Английский
Процитировано
0Industrial Crops and Products, Год журнала: 2024, Номер 223, С. 120171 - 120171
Опубликована: Дек. 6, 2024
Язык: Английский
Процитировано
0