Classification of Strawberry Maturity Using Swin Transformer V2: Integrating Near-Infrared Spectral, Chemical, and Optical Properties DOI Creative Commons

Yihang Feng,

Yi Wang,

A. G. Purohit

и другие.

Journal of Future Foods, Год журнала: 2025, Номер unknown

Опубликована: Май 1, 2025

Язык: Английский

Advances in MEMS, Optical MEMS, and Nanophotonics Technologies for Volatile Organic Compound Detection and Applications DOI Creative Commons

Dongxiao Li,

Hong Zhou, Zhihao Ren

и другие.

Small Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 15, 2025

Volatile organic compounds (VOCs) are a class of with high vapor pressure and low boiling points, widely present in both natural environments human activities. VOCs released from various sources not only contribute to environmental pollution but also pose threats ecosystems health. Moreover, some considered biomarkers exhaled breath can be utilized identify diseases. Therefore, monitoring controlling VOC emissions concentrations crucial for safeguarding the environment In recent years, significant advancements have been achieved micro‐electromechanical system (MEMS)‐based sensing optical technologies, offering new avenues detection. This article provides comprehensive overview research progress MEMS sensors, focusing on their mechanisms classifications. It then discusses role artificial intelligence enhancing identification quantification, as well trends toward sensor miniaturization intelligence. Furthermore, highlights diverse applications sensors medical diagnostics, agricultural food testing, Internet Things. Finally, it emphasizes opportunities challenges associated providing valuable insights practical applications.

Язык: Английский

Процитировано

3

Harnessing artificial intelligence for advancements in Rice / wheat functional food Research and Development DOI

Fangye Zeng,

Min Zhang, Chung Lim Law

и другие.

Food Research International, Год журнала: 2025, Номер unknown, С. 116306 - 116306

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

Early identification and monitoring of soft rot contamination in postharvest kiwifruit based on volatile fingerprints using headspace-gas chromatography-ion mobility spectrometry DOI
Qingchao Gao,

Longfei Wang,

Xue Li

и другие.

Food Chemistry, Год журнала: 2025, Номер 474, С. 143195 - 143195

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

2

An integrated colorimetric biosensing platform containing microneedle patches and aptasensor for histamine monitoring in seafood DOI
Wenjing Wang, Rui Feng,

Kaiyue Wei

и другие.

Journal of Hazardous Materials, Год журнала: 2025, Номер 489, С. 137536 - 137536

Опубликована: Фев. 9, 2025

Язык: Английский

Процитировано

2

Machine Learning-Assisted FT-IR Spectroscopy for Identification of Pork Oil Adulteration in Tuna Fish Oil DOI
Anjar Windarsih, Tri Hadi Jatmiko, Ayu Septi Anggraeni

и другие.

Vibrational Spectroscopy, Год журнала: 2024, Номер 134, С. 103715 - 103715

Опубликована: Июнь 28, 2024

Язык: Английский

Процитировано

9

Machine learning supported ground beef freshness monitoring based on near‐infrared and paper chromogenic array DOI Creative Commons

Yihang Feng,

Yi Wang, Burcu Beykal

и другие.

Food Frontiers, Год журнала: 2024, Номер 5(5), С. 2199 - 2210

Опубликована: Июнь 24, 2024

Abstract Maintaining freshness and quality is crucial in the meat industry, as lipid oxidation can lead to undesirable odors, flavors, potential health risks. Traditional methods for assessing often involve time‐consuming destructive techniques, highlighting need rapid, noninvasive approaches. Recent advancements spectroscopic chromogenic sensor array technologies have opened up new avenues monitoring parameters, offering real‐time, accurate, cost‐effective solutions. As thiobarbituric acid reactive substances (TBARS) value a classic indicator of oxidation, this study investigated data fusion near‐infrared spectroscopy (NIR) paper (PCA) ground beef TBARS. A standardized PCA was fabricated by photolithography with nine chemoresponsive dyes. Changes volatile organic compounds during storage were captured shifts color patterns. Nippy, an open‐source Python module, used automated NIR spectra preprocessing. The optimal preprocessing pipeline found 10‐fold cross‐validation machine learning model development. Among optimized models, partial least square regression showed best performance coefficient determination ( R 2 ) .9477, root mean squared error prediction 0.0545 mg malondialdehyde/kg meat, residual deviation 4.3717. promising result indicated combinations monitor TBARS values assessment.

Язык: Английский

Процитировано

7

New Revolution for Quality Control of TCM in Industry 4.0: Focus on Artificial Intelligence and Bioinformatics DOI Creative Commons
Yaolei Li, Jing Fan, Xian‐Long Cheng

и другие.

TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер unknown, С. 118023 - 118023

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

7

Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review DOI Creative Commons
Marian Gil, M. Rudy, Paulina Duma‐Kocan

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1530 - 1530

Опубликована: Фев. 3, 2025

This manuscript was prepared for the purpose of an in-depth analysis development electronic sensors in food quality assessment. In this study, following research question asked: What are arguments assessment? The aim work to comprehensively review current scientific literature presenting discussed issues and their systematization, as well present prospects, threats, applications testing. greatest interest researchers lies use e-nose. contrast, fewer publications concerned e-tongue applications, smallest number works e-eye application. initial application industry progressed from on identification single ingredients or properties creation increasingly complex instruments that analyze areas characteristics. Specifically, e-sensor has focused individual e-nose, e-tongue, devices not provided complete information about food. is confirmed by high accuracy results regarding combined

Язык: Английский

Процитировано

1

Enhancing optical nondestructive methods for food quality and safety assessments with machine learning techniques: A survey DOI Creative Commons
Xinhao Wang,

Yihang Feng,

Yi Wang

и другие.

Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101734 - 101734

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Revolutionizing Food Quality With Machine Vision and Machine Learning Techniques DOI
MOHAMMED AL RASHED,

Shaimaa Fakhry,

Radwa Satour

и другие.

IGI Global eBooks, Год журнала: 2025, Номер unknown, С. 71 - 124

Опубликована: Фев. 13, 2025

Ensuring food quality and safety is a complex multi-layered issue that must take into account all stages of processing, from cultivation harvesting to storage, transportation, consumption. The application machine learning in the industry can significantly improve work efficiency ensure safety. In addition traditional assessment applications, deep techniques are also being used for more tasks such as detecting defects, foreign objects, freshness. This chapter discusses various applications vision technology conjunction with sector, image recognition, classification, control, chain. addition, several challenges related cost obtaining annotating datasets discussed. Furthermore, future research needs discussed further investigate how scope datasets, optimise robustness interpretability different models systems.

Язык: Английский

Процитировано

1