
Journal of Future Foods, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Journal of Future Foods, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Small Science, Год журнала: 2025, Номер unknown
Опубликована: Янв. 15, 2025
Volatile organic compounds (VOCs) are a class of with high vapor pressure and low boiling points, widely present in both natural environments human activities. VOCs released from various sources not only contribute to environmental pollution but also pose threats ecosystems health. Moreover, some considered biomarkers exhaled breath can be utilized identify diseases. Therefore, monitoring controlling VOC emissions concentrations crucial for safeguarding the environment In recent years, significant advancements have been achieved micro‐electromechanical system (MEMS)‐based sensing optical technologies, offering new avenues detection. This article provides comprehensive overview research progress MEMS sensors, focusing on their mechanisms classifications. It then discusses role artificial intelligence enhancing identification quantification, as well trends toward sensor miniaturization intelligence. Furthermore, highlights diverse applications sensors medical diagnostics, agricultural food testing, Internet Things. Finally, it emphasizes opportunities challenges associated providing valuable insights practical applications.
Язык: Английский
Процитировано
3Food Research International, Год журнала: 2025, Номер unknown, С. 116306 - 116306
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
3Food Chemistry, Год журнала: 2025, Номер 474, С. 143195 - 143195
Опубликована: Фев. 3, 2025
Язык: Английский
Процитировано
2Journal of Hazardous Materials, Год журнала: 2025, Номер 489, С. 137536 - 137536
Опубликована: Фев. 9, 2025
Язык: Английский
Процитировано
2Vibrational Spectroscopy, Год журнала: 2024, Номер 134, С. 103715 - 103715
Опубликована: Июнь 28, 2024
Язык: Английский
Процитировано
9Food Frontiers, Год журнала: 2024, Номер 5(5), С. 2199 - 2210
Опубликована: Июнь 24, 2024
Abstract Maintaining freshness and quality is crucial in the meat industry, as lipid oxidation can lead to undesirable odors, flavors, potential health risks. Traditional methods for assessing often involve time‐consuming destructive techniques, highlighting need rapid, noninvasive approaches. Recent advancements spectroscopic chromogenic sensor array technologies have opened up new avenues monitoring parameters, offering real‐time, accurate, cost‐effective solutions. As thiobarbituric acid reactive substances (TBARS) value a classic indicator of oxidation, this study investigated data fusion near‐infrared spectroscopy (NIR) paper (PCA) ground beef TBARS. A standardized PCA was fabricated by photolithography with nine chemoresponsive dyes. Changes volatile organic compounds during storage were captured shifts color patterns. Nippy, an open‐source Python module, used automated NIR spectra preprocessing. The optimal preprocessing pipeline found 10‐fold cross‐validation machine learning model development. Among optimized models, partial least square regression showed best performance coefficient determination ( R 2 ) .9477, root mean squared error prediction 0.0545 mg malondialdehyde/kg meat, residual deviation 4.3717. promising result indicated combinations monitor TBARS values assessment.
Язык: Английский
Процитировано
7TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер unknown, С. 118023 - 118023
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
7Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1530 - 1530
Опубликована: Фев. 3, 2025
This manuscript was prepared for the purpose of an in-depth analysis development electronic sensors in food quality assessment. In this study, following research question asked: What are arguments assessment? The aim work to comprehensively review current scientific literature presenting discussed issues and their systematization, as well present prospects, threats, applications testing. greatest interest researchers lies use e-nose. contrast, fewer publications concerned e-tongue applications, smallest number works e-eye application. initial application industry progressed from on identification single ingredients or properties creation increasingly complex instruments that analyze areas characteristics. Specifically, e-sensor has focused individual e-nose, e-tongue, devices not provided complete information about food. is confirmed by high accuracy results regarding combined
Язык: Английский
Процитировано
1Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101734 - 101734
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1IGI Global eBooks, Год журнала: 2025, Номер unknown, С. 71 - 124
Опубликована: Фев. 13, 2025
Ensuring food quality and safety is a complex multi-layered issue that must take into account all stages of processing, from cultivation harvesting to storage, transportation, consumption. The application machine learning in the industry can significantly improve work efficiency ensure safety. In addition traditional assessment applications, deep techniques are also being used for more tasks such as detecting defects, foreign objects, freshness. This chapter discusses various applications vision technology conjunction with sector, image recognition, classification, control, chain. addition, several challenges related cost obtaining annotating datasets discussed. Furthermore, future research needs discussed further investigate how scope datasets, optimise robustness interpretability different models systems.
Язык: Английский
Процитировано
1