Innovative Food Science & Emerging Technologies, Год журнала: 2024, Номер unknown, С. 103876 - 103876
Опубликована: Ноя. 1, 2024
Язык: Английский
Innovative Food Science & Emerging Technologies, Год журнала: 2024, Номер unknown, С. 103876 - 103876
Опубликована: Ноя. 1, 2024
Язык: Английский
Foods, Год журнала: 2024, Номер 13(18), С. 3007 - 3007
Опубликована: Сен. 23, 2024
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform into valuable resources. This paper explores innovative strategies converting wastes renewable resources, emphasizing integration sustainable technologies and zero-waste principles. main objective is demonstrate how these approaches can contribute more system by reducing environmental impacts enhancing resource efficiency. Novel contributions this study include development bioproducts from various streams, highlighting potential underutilized resources like bread jackfruit waste. Through case studies experimental findings, illustrates successful application green techniques, such as microbial fermentation bioprocessing, in valorizing wastes. implications research extend policy frameworks, encouraging adoption bioeconomy models that not only address challenges but also foster economic growth sustainability. These findings underscore serve cornerstone transition circular, regenerative economy.
Язык: Английский
Процитировано
13E3S Web of Conferences, Год журнала: 2025, Номер 601, С. 00079 - 00079
Опубликована: Янв. 1, 2025
Accurately forecasting the energy consumption of industrial equipment and linking these forecasts to health has become essential in modern manufacturing. This capability is crucial for advancing predictive maintenance strategies reduce greenhouse gas emissions. In this study, we propose a hybrid model that combines Long Short-Term Memory (LSTM) prediction with statistical change-point detection algorithm identify significant shifts patterns. These are then correlated equipment’s status, providing comprehensive overview usage potential failure points. our case began by evaluating confirm performance LSTM, comparing it several machine learning models commonly used literature, such as Random Forest, Support Vector Machines (SVM), GRU. After assessing different loss functions, LSTM achieved strongest accuracy, an RMSE 0.07, MAE 0.0188, R 2 92.7%. The second part model, which focuses on detecting change points patterns, was evaluated testing cost functions combined binary segmentation dynamic programming. Applied real-world case, successfully detected point two months before failure, offering 27,052 kWh. framework not only clarifies relationship between CO2 emissions but also provides actionable insights into emission reduction, contributing both economic environmental sustainability.
Язык: Английский
Процитировано
0Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 107073 - 107073
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0animal, Год журнала: 2025, Номер unknown, С. 101495 - 101495
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Agricultural Engineering/Inżynieria Rolnicza, Год журнала: 2024, Номер 28(1), С. 235 - 250
Опубликована: Янв. 1, 2024
Abstract The aim of the study was to assess potential use carbon footprint for environmental evaluation agricultural systems. Carbon analysis in agriculture has a strategic dimension terms sustainable food production. Reducing negative impact on climate change is key element many quality management systems and included legislation countries. One challenges calculating lack clear methodologies determination greenhouse gas (GHG) emissions at this stage. Normative documents highlight need consider all areas GHG emissions, but practice, exceedingly difficult due specific characteristics plant production, which takes place under variable conditions related soil type, its properties, chemical composition, climate, production technology. Based review scientific literature, it concluded that studies evaluations technology improvements (implementing actions compensate anthropogenic pressure) should be conducted within an individual system boundary. boundary developed based process map created accordance with guidelines ISO 31000:2018. Most input data used calculations must standardized range parameters dependent natural, geographical, infrastructural location.
Язык: Английский
Процитировано
2Biocatalysis and Agricultural Biotechnology, Год журнала: 2024, Номер unknown, С. 103480 - 103480
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1European Public & Social Innovation Review, Год журнала: 2024, Номер 9, С. 1 - 21
Опубликована: Авг. 20, 2024
Introducción: En la era digital actual, inteligencia artificial (IA) se posiciona como una herramienta crucial para avanzar hacia cadenas de suministro sostenibles, abordando ineficiencias y reduciendo emisiones carbono derivadas creciente demanda energética. Metodología: Se realizó revisión narrativa literatura, evaluando artículos publicados en las bases datos Scopus Science Direct entre 2022 2024, capturar los avances recientes del impacto IA sostenibilidad suministro. Resultados: Los hallazgos subrayan capacidad optimizar procesos logísticos, mejorar predicción gestionar inventarios manera eficiente, huella optimizando el uso recursos. Discusión: Aunque beneficios son significativos, implementación enfrenta desafíos alto consumo energético complejidad integración datos. Es esencial considerar implicaciones éticas sociales maximizar minimizar impactos negativos. Conclusiones: La gestión cadena representa un avance significativo eficiencia operativa. requieren tecnologías más eficientes políticas que apoyen adopción sostenible superar beneficios.
Процитировано
0Innovative Food Science & Emerging Technologies, Год журнала: 2024, Номер unknown, С. 103876 - 103876
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
0