Study on the assessment of illegal wildlife trade projects based on LSTM model and Monte Carlo simulation DOI Creative Commons
Huijun Zhang, Yuhan Jiang,

Shanpeng Zhu

и другие.

Highlights in Science Engineering and Technology, Год журнала: 2024, Номер 98, С. 323 - 336

Опубликована: Май 16, 2024

The aim of this paper is to conduct an assessment study illegal wildlife trade projects using LSTM models and Monte Carlo simulation techniques. Firstly, based on the data from 1994-2023, we predicted number animal plant in next five years model, results showed that although was a decreasing trend, it still high, indicating problem needs attract global attention. Subsequently, used Kendall correlation coefficient analyse relationship between counts economic, environmental climate indicators, found positive with economic losses natural disasters extreme weather events. Finally, identified seven key parameters affecting project success simulated posterior distributions these Markov Chain method, then conducted simulations estimate probability as 93.12%. Sensitivity analyses indicate most sensitive level financial support monitoring technology. Overall, data-driven approach, provides important reference for assessing projects.

Язык: Английский

Data-Driven Deep-Learning Model for Predicting Jacking Force of Rectangular Pipe Jacking Tunnel DOI
Yongsuo Li,

Xiaoxuan Weng,

Da Hu

и другие.

Journal of Computing in Civil Engineering, Год журнала: 2025, Номер 39(3)

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

4

Prediction of shield machine attitude parameters based on decomposition and multi-head attention mechanism DOI
Qiushi Wang, Wenqi Ding, Kourosh Khoshelham

и другие.

Automation in Construction, Год журнала: 2025, Номер 171, С. 105973 - 105973

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Long-term forecasting of shield tunnel position and attitude deviation using the 1DCNN-informer method DOI Creative Commons
Jiajie Zhen, Ming Huang, Shuang Li

и другие.

Engineering Science and Technology an International Journal, Год журнала: 2025, Номер 63, С. 101957 - 101957

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

1

Physics-Informed Neural Network (PINN) model for predicting subgrade settlement induced by shield tunnelling beneath an existing railway subgrade DOI
Guankai Wang, Shan Yao, Bettina Detmann

и другие.

Transportation Geotechnics, Год журнала: 2024, Номер unknown, С. 101409 - 101409

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

6

Prediction and risk assessment of lateral collapse in deep foundation pits using machine learning DOI
Hongyun Fan, Liping Li,

Shen Zhou

и другие.

Automation in Construction, Год журнала: 2025, Номер 171, С. 106011 - 106011

Опубликована: Янв. 28, 2025

Язык: Английский

Процитировано

0

Analytical solution of the evolution of railway subgrade settlement induced by shield tunnelling beneath considering soil stress release DOI
Yao Shan, Guankai Wang, Weifan Lin

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 162, С. 106607 - 106607

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

0

Parametric deep learning model for predicting bearing capacity of strip foundation via neural operator DOI Creative Commons
Tong Niu,

Maosong Huang,

Jian Yu

и другие.

AI in Civil Engineering, Год журнала: 2025, Номер 4(1)

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Data-Driven Method for Predicting Long-Term Underground Pipeline Settlement Induced by Rectangular Pipe Jacking Tunnel Construction DOI
Yongsuo Li,

Xiaoxuan Weng,

Da Hu

и другие.

Journal of Pipeline Systems Engineering and Practice, Год журнала: 2025, Номер 16(3)

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

0

A lightweight physics‐data‐driven method for real‐time prediction of subgrade settlements induced by shield tunneling DOI Creative Commons
Guankai Wang, Shan Yao, Weifan Lin

и другие.

Computer-Aided Civil and Infrastructure Engineering, Год журнала: 2025, Номер unknown

Опубликована: Май 19, 2025

Abstract Real‐time prediction of subgrade settlement caused by shield tunneling is crucial in engineering applications. However, data‐driven methods are prone to overfitting, while physical rely on certain assumptions, making it difficult select satisfactory parameters. Although there currently physics‐data‐driven methods, they typically require extensive iterative calculations with models, which makes them unavailable for real‐time prediction. This paper introduces a lightweight method predicting tunneling. The core concept involves using single calculation the model provide weak constraint. A deep learning network then designed capture spatiotemporal correlations based ConvLSTM. By iteratively incorporating data, constraints further enhanced. combines predictive power reasonable laws, validated good performance practical project. results demonstrate that this meets requirements engineering, achieving an coefficient determination 0.980, root mean square error 0.22 mm, and absolute 0.15 mm. Furthermore, outperforms both models demonstrates generalization performance. study provides effective guidance practices.

Язык: Английский

Процитировано

0

A deep graph neural network-based link prediction model for proactive anomaly detection in discrete manufacturing workshop DOI
Shengbo Wang, Yu Guo, Shaohua Huang

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 79, С. 301 - 317

Опубликована: Фев. 4, 2025

Язык: Английский

Процитировано

0