Improved Particle Swarm Optimization with Deep Learning-Based Municipal Solid Waste Management in Smart Cities DOI Creative Commons

R. Udayakumar,

R Elankavi,

V. Vimal

и другие.

Revista de Gestão Social e Ambiental, Год журнала: 2023, Номер 17(4), С. e03561 - e03561

Опубликована: Июнь 27, 2023

Objectives: The Internet of Things (IoT) framework is crucial for improving monitoring applications smart cities and controlling municipal operations in real time. most significant issue with to has been the handling solid waste, which may have negative consequences on health well-being people. Waste management become a problem that developing developed nations must face. waste exciting affects habitats all around world. Thus, it necessary create an efficient method eliminate these issues or, at very least, reduce them manageable level. Theoretical framework: This work proposed Improved Particle Swarm Optimization Deep Learning-based Municipal Solid Management (IPSODL-MSWM) cities. Methods: IPSODL-MSWM approach aims identify various types materials enable sustainable management. A Single Shot Detection (SSD) model enables object detection paradigm. Then, feature vectors were generated using MobileNetV2 based deep Convolutional Neural Network (CNN). IPSO obtained by hybrid Genetic Algorithm (GA) PSO algorithm. Results Conclusion: IPSODL employed automatic hyperparameter tuning since manual trial-and-error time-consuming. Implications research: uses Support Vector Machine (SVM) accurate excess categorization this work. implies better city development. Originality/value: With optimal accuracy 99.45%, many simulations show model's enhanced capability classification.

Язык: Английский

Estimating construction waste generation in the Greater Bay Area, China using machine learning DOI

Weisheng Lu,

Jinfeng Lou, Chris Webster

и другие.

Waste Management, Год журнала: 2021, Номер 134, С. 78 - 88

Опубликована: Авг. 17, 2021

Язык: Английский

Процитировано

118

Machine learning in construction and demolition waste management: Progress, challenges, and future directions DOI
Yu Gao,

Jiayuan Wang,

Xiaoxiao Xu

и другие.

Automation in Construction, Год журнала: 2024, Номер 162, С. 105380 - 105380

Опубликована: Март 16, 2024

Язык: Английский

Процитировано

33

Pollution characteristics and risk assessment of heavy metals in the soil of a construction waste landfill site DOI

Gaofeng Wu,

Lili Wang,

Ran Yang

и другие.

Ecological Informatics, Год журнала: 2022, Номер 70, С. 101700 - 101700

Опубликована: Июнь 3, 2022

Язык: Английский

Процитировано

67

The technology-environment relationship revisited: Evidence from the impact of prefabrication on reducing construction waste DOI
Ruibo Hu, Ke Chen,

Weili Fang

и другие.

Journal of Cleaner Production, Год журнала: 2022, Номер 341, С. 130883 - 130883

Опубликована: Фев. 10, 2022

Язык: Английский

Процитировано

46

A hybrid machine-learning model for predicting the waste generation rate of building demolition projects DOI
Gi-Wook Cha,

Hyeun Jun Moon,

Young‐Chan Kim

и другие.

Journal of Cleaner Production, Год журнала: 2022, Номер 375, С. 134096 - 134096

Опубликована: Сен. 14, 2022

Язык: Английский

Процитировано

45

Predicting construction waste in Egyptian residential projects: a robust multiple regression model approach DOI Creative Commons

Mohamed KhairEldin,

Ahmed Osama Daoud,

Ahmed H. Ibrahim

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 23, 2025

Effective construction waste (CW) management, mainly concrete, brick, and steel, is a critical challenge due to its significant environmental economic impacts. This study addresses this by proposing multiple linear regression models predict generation in residential buildings within the Egyptian industry, considering influence of factors such as building design site management features. Using data from 25 case studies, demonstrated high predictive accuracy, with adjusted R² values 0.877, 0.893, 0.889 for bricks, steel waste, respectively. These R2 indicate that explain approximately 88-89% variance buildings, highlighting their effectiveness enhancing resource planning strategies. The findings suggest incorporating variables total area, consistency, organization significantly improves accuracy predictions. Although show acceptable performance, future research should aim expand dataset, incorporate additional variables, test across different types projects validate further refine these tools. offer valuable insights practices, minimizing supporting sustainable development Egypt's industry. With accurate forecasts generation, help project managers stakeholders plan CW more effectively, mitigating unnecessary material consumption reducing adopt improved recycling processes decreased dependence on landfills, support Vision 2030.

Язык: Английский

Процитировано

2

Design and development of smart Internet of Things–based solid waste management system using computer vision DOI Open Access
Senthil Sivakumar Mookkaiah,

Gurumekala Thangavelu,

Rahul Hebbar

и другие.

Environmental Science and Pollution Research, Год журнала: 2022, Номер 29(43), С. 64871 - 64885

Опубликована: Апрель 27, 2022

Язык: Английский

Процитировано

33

Assessment of heavy metal pollution in the soil of a construction and demolition waste landfill DOI
Amirhossein Balali,

Sahar Gholami,

Mohammadreza Javanmardi

и другие.

Environmental Nanotechnology Monitoring & Management, Год журнала: 2023, Номер 20, С. 100856 - 100856

Опубликована: Июль 18, 2023

Язык: Английский

Процитировано

22

Enhancing information standards for automated construction waste quantification and classification DOI Creative Commons

Subarna Sivashanmugam,

Sergio Rodríguez, Farzad Pour Rahimian

и другие.

Automation in Construction, Год журнала: 2023, Номер 152, С. 104898 - 104898

Опубликована: Май 10, 2023

Accurate quantification and detailed classification of construction waste are paramount to improving their management. Over the last decades, various models have been developed measure, manage, report generation. A understanding those is essential explore applications across life-cycle stages a built asset. Existing reviews primarily focused on analysing functions methodologies, but digital information standards automate process under-explored in existing literature. review adopted analyse papers published from 2012 2022. Out 279 articles retrieved, 71 meeting eligibility criteria were included. critical analysis indicates that unified data structure, standard information, approach interoperability between BIM knowledge bases vital reinforce efficiency. Based findings, conceptual framework demonstrate workflow for building projects. The outcomes will facilitate researchers identify prevailing gaps enhance system meet demands.

Язык: Английский

Процитировано

21

Characterizing temporal and spatial characteristics of urban building material metabolism and embodied carbon emissions through a 4D GIS-MFA-LCA model DOI

Yuqiong Long,

Qingbin Song, Beijia Huang

и другие.

Resources Conservation and Recycling, Год журнала: 2024, Номер 206, С. 107642 - 107642

Опубликована: Апрель 19, 2024

Язык: Английский

Процитировано

9