Moving beyond silver in point-of-use drinking water pathogen control DOI Creative Commons

Daniel P. Huffman,

Sarah Pitell,

Paige J. Moncure

и другие.

Environmental Science Water Research & Technology, Год журнала: 2024, Номер 10(5), С. 1009 - 1018

Опубликована: Янв. 1, 2024

Managing drinking water-associated pathogens that can cause infections in immunocompromised individuals is a persistent challenge, particularly for healthcare facilities where occupant exposures carry substantial health risk.

Язык: Английский

Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures DOI Creative Commons
Vera Kuznetsova, Áine Coogan,

Dmitry Botov

и другие.

Advanced Materials, Год журнала: 2024, Номер 36(18)

Опубликована: Янв. 19, 2024

Abstract Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design discovery, reducing need for time‐consuming labor‐intensive experiments simulations. In contrast to their achiral counterparts, application machine chiral nanomaterials is still its infancy, with a limited number publications date. This despite great advance development new sustainable high values optical activity, circularly polarized luminescence, enantioselectivity, as well analysis structural chirality by electron microscopy. this review, an methods used studying provided, subsequently offering guidance on adapting extending work nanomaterials. An overview within framework synthesis–structure–property–application relationships presented insights how leverage study these highly complex are provided. Some key recent reviewed discussed Finally, review captures achievements, ongoing challenges, prospective outlook very important field.

Язык: Английский

Процитировано

25

Machine Learning in Polymer Research DOI Creative Commons

Wei Ge,

R. Silva‐González, Yanan Fan

и другие.

Advanced Materials, Год журнала: 2025, Номер unknown

Опубликована: Фев. 9, 2025

Machine learning is increasingly being applied in polymer chemistry to link chemical structures macroscopic properties of polymers and identify patterns the that help improve specific properties. To facilitate this, a dataset needs be translated into machine readable descriptors. However, limited inadequately curated datasets, broad molecular weight distributions, irregular configurations pose significant challenges. Most off shelf mathematical models often need refinement for applications. Addressing these challenges demand close collaboration between chemists mathematicians as must formulate research questions terms while are required refine This review unites both disciplines address curation hurdles highlight advances synthesis modeling enhance data availability. It then surveys ML approaches used predict solid-state properties, solution behavior, composite performance, emerging applications such drug delivery polymer-biology interface. A perspective field concluded importance FAIR (findability, accessibility, interoperability, reusability) integration theory discussed, thoughts on machine-human interface shared.

Язык: Английский

Процитировано

5

AI-Driven Innovations in Smart Multifunctional Nanocarriers for Drug and Gene Delivery: A Mini-Review DOI

H. Noury,

Abbas Rahdar, Luiz Fernando Romanholo Ferreira

и другие.

Critical Reviews in Oncology/Hematology, Год журнала: 2025, Номер unknown, С. 104701 - 104701

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

4

Convergence of Artificial Intelligence, Machine Learning, Cheminformatics, and Polymer Science in Macromolecules DOI Creative Commons
Arthi Jayaraman, Bradley D. Olsen

Macromolecules, Год журнала: 2024, Номер unknown

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

7

A prospective on machine learning challenges, progress, and potential in polymer science DOI Creative Commons

Daniel C. Struble,

Bradley G. Lamb, Boran Ma

и другие.

MRS Communications, Год журнала: 2024, Номер 14(5), С. 752 - 770

Опубликована: Июль 1, 2024

Abstract Artificial intelligence and machine learning (ML) continue to see increasing interest in science engineering every year. Polymer is no different, though implementation of data-driven algorithms this subfield has unique challenges barring widespread application these techniques the study polymer systems. In Prospective, we discuss several critical ML science, including structure representation, high-throughput limitations, limited data availability. Promising studies targeting resolution issues are explored, contemporary research demonstrating potential despite existing obstacles discussed. Finally, present an outlook for moving forward. Graphical

Язык: Английский

Процитировано

4

Leveraging engineered nanomaterials to support material circularity DOI Creative Commons
Leanne M. Gilbertson, Matthew J. Eckelman, Thomas L. Theis

и другие.

Environmental Science Nano, Год журнала: 2024, Номер 11(7), С. 2885 - 2893

Опубликована: Янв. 1, 2024

There are numerous opportunities for nanomaterials and nanotechnology to support circular economy adoption. In this perspective, we present the important role engineered can play in advancing circularity of bulk composite materials.

Язык: Английский

Процитировано

4

Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation DOI
Hamid Ghasemi, Hessam Yazdani

Computational Materials Science, Год журнала: 2024, Номер 246, С. 113399 - 113399

Опубликована: Окт. 17, 2024

Язык: Английский

Процитировано

3

Machine‐Learning‐Enhanced Trial‐and‐Error for Efficient Optimization of Rubber Composites DOI Open Access
Wei Deng, Lijun Liu, Xiaohang Li

и другие.

Advanced Materials, Год журнала: 2025, Номер unknown

Опубликована: Март 10, 2025

The traditional trial-and-error approach, although effective, is inefficient for optimizing rubber composites. latest developments in machine learning (ML)-assisted methodologies are also not suitable predicting and composite properties. This due to the dependency of properties on processing conditions, which prevents alignment data collected from different sources. In this work, a novel workflow called ML-enhanced approach proposed. integrates orthogonal experimental design with symbolic regression (SR) effectively extract empirical principles. combination enables optimization process retain characteristics while significantly improving efficiency capability. Using composites as model system, extracts principles encapsulated by high-frequency terms SR-derived mathematical formulas, offering clear guidance material property optimization. An online platform has been developed that allows no-code usage proposed methodology, designed seamlessly integrate into existing process.

Язык: Английский

Процитировано

0

Advancing Polymer Nanocomposites Through Mechanochemical Approaches DOI Creative Commons
Linh Chi Tran, Xiao Su, Huynh H. Nguyen

и другие.

Advanced Nanocomposites, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Basic Concepts and Tools of Artificial Intelligence in Polymer Science DOI Creative Commons
Khalid Ferji

Polymer Chemistry, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

AI-driven polymer science: a structured perspective on integrating machine learning for data analysis, property prediction, and automated research workflows.

Язык: Английский

Процитировано

0