COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets
Cell Reports Physical Science,
Год журнала:
2024,
Номер
unknown, С. 102348 - 102348
Опубликована: Дек. 1, 2024
Язык: Английский
Accelerating the Development of Sustainable Catalytic Processes through Data Science
Organic Process Research & Development,
Год журнала:
2025,
Номер
unknown
Опубликована: Янв. 2, 2025
Язык: Английский
Optimizing Phosphine Ligands for Ruthenium Catalysts in Asymmetric Hydrogenation of β-Keto Esters: The Role of Water in Activity and Selectivity
Molecular Catalysis,
Год журнала:
2025,
Номер
574, С. 114877 - 114877
Опубликована: Фев. 4, 2025
Язык: Английский
NHC-Cracker: A Platform for the In Silico Engineering of N-Heterocyclic Carbenes for Diverse Chemical Applications
ACS Catalysis,
Год журнала:
2025,
Номер
unknown, С. 5915 - 5927
Опубликована: Март 27, 2025
Язык: Английский
A meta-learning approach for selectivity prediction in asymmetric catalysis
Nature Communications,
Год журнала:
2025,
Номер
16(1)
Опубликована: Апрель 15, 2025
Abstract
Transition
metal-catalyzed
asymmetric
reactions
are
of
high
contemporary
importance
in
organic
synthesis.
Recently,
machine
learning
(ML)
has
shown
promise
accelerating
the
development
newer
catalytic
protocols.
However,
need
for
large
amount
experimental
data
can
present
a
bottleneck
implementing
ML
models.
Here,
we
propose
meta-learning
workflow
that
harness
literature-derived
to
extract
shared
reaction
features
and
requires
only
few
examples
predict
outcome
new
reactions.
Prototypical
networks
used
as
method
enantioselectivity
hydrogenation
olefins.
This
model
consistently
provides
significant
performance
improvement
over
other
popular
methods
such
random
forests
graph
neural
networks.
The
our
meta-model
is
analyzed
with
varying
sizes
training
demonstrate
its
utility
even
limited
data.
A
good
on
an
out-of-sample
test
set
further
indicates
general
applicability
approach.
We
believe
this
work
will
provide
leap
forward
identifying
promising
early
phases
when
minimal
available.
Язык: Английский
C−S‐Selective Stille‐Coupling Enables Stereodefined Alkene Synthesis
Jing Jing,
Ying Hu,
Zhenfeng Tian
и другие.
Angewandte Chemie International Edition,
Год журнала:
2024,
Номер
unknown
Опубликована: Июль 30, 2024
Abstract
A
palladium‐catalyzed
highly
C−S‐selective
Stille
cross‐coupling
between
aryl
thianthrenium
salts
and
tri‐
or
tetrasubstituted
alkenyl
stannanes
is
described.
Herein,
critical
challenges
including
site‐
chemoselectivity
control
are
well
addressed
through
C−H
thianthrenation
C−S
alkenylation,
thereby
providing
an
expedient
access
to
stereodefined
alkenes
in
a
stereoretentive
fashion.
Indeed,
the
Stille‐alkenylation
of
poly(
pseudo
)halogenated
arenes
displays
privileged
capability
differentiate
over
C−I,
C−Br,
C−Cl
bonds,
as
oxygen‐based
triflates
(C−OTf),
tosylates
(C−OTs),
carbamates
sulfamates
under
mild
reaction
conditions.
Sequential
multiple
cross‐couplings
via
selective
C−X
functionalization
should
be
widely
applicable
for
increasing
functional
molecular
complexity.
Modular
installation
stereospecific
alkene
motifs
into
pharmaceuticals
illustrated
synthetic
application
present
protocol
drug
discovery.
Язык: Английский
C−S‐Selective Stille‐Coupling Enables Stereodefined Alkene Synthesis
Jing Jing,
Ying Hu,
Zhenfeng Tian
и другие.
Angewandte Chemie,
Год журнала:
2024,
Номер
136(43)
Опубликована: Июль 30, 2024
Abstract
In
dieser
Arbeit
wird
eine
Palladium‐katalysierte,
hochselektive
C−S‐Stille‐Kreuzkupplung
zwischen
Arylthianthreniumsalzen
und
tri‐
oder
tetrasubstituierten
Alkenylstannanen
präsentiert.
Dabei
werden
Herausforderungen
wie
die
Kontrolle
der
Positions‐
Chemoselektivität
durch
C−H‐Thianthrenierung
C−S‐Alkenylierung
erfolgreich
gelöst,
wodurch
ein
nützlicher
Zugang
zu
stereodefinierten
Alkenen
stereoretentiv
ermöglicht
wird.
Die
Palladium‐katalysierte
Stille‐Alkenylierung
von
poly(pseudo)halogenierten
Arenen
zeigt
privilegierte
Fähigkeit,
C−S‐
über
C−I‐,
C−Br‐
C−Cl‐Bindungen
sowie
Triflate
(C−OTf),
Tosylate
(C−OTs),
Carbamate
Sulfamate
unter
milden
Reaktionsbedingungen
differenzieren.
Sequenzielle
mehrfache
Kreuzkupplungen
selektive
C−X‐Funktionalisierung
sollten
bei
zunehmender
funktioneller
Molekülkomplexität
breit
einsetzbar
sein.
Der
modulare
Einbau
stereospezifischen
Alken‐Motiven
in
Pharmazeutika
veranschaulicht
synthetische
Anwendung
Arzneimittelforschung.
AI-Driven Discovery of Asymmetric Pauson–Khand Reactions: A New Toolbox in a Synthetic Chemist’s Treasure
The Journal of Physical Chemistry A,
Год журнала:
2024,
Номер
unknown
Опубликована: Ноя. 21, 2024
Enantioselective
catalytic
reactions
have
a
significant
impact
on
chemical
synthesis,
and
they
are
important
components
in
an
experimental
chemist's
toolbox.
However,
development
of
asymmetric
catalysts
often
relies
the
intuition
experience
synthetic
chemist,
making
process
both
time-consuming
resource-intensive.
The
machine-learning-assisted
reaction
discovery
can
serve
as
very
efficient
platform
for
obtaining
high-performing
time-economical
manner
without
extensive
experimentation.
Herein,
we
report
data-driven
machine
learning
method
reliably
predicting
enantiomeric
excess
(%ee)
211
Pauson-Khand
(PKR
1-PKR
211)
between
variety
45
unique
1,6-enyne
substrates
12
axially
chiral
biaryl
ligands
presence
different
conditions
like
varying
CO
gas
pressure,
temperature,
solvent
polarity.
Four
algorithms
been
studied:
extreme
gradient
boosting
(XGBoost),
random
forest
(RF),
light
(LGBM),
neural
network
(NN).
A
fivefold
cross
validation
was
applied
to
our
k-means
SMOTE-augmented
data
set
obtain
optimized
hyperparameters
training
set,
subsequently,
these
parameters
were
used
test
set.
In
case
out-of-box
XGBoost
is
found
be
superior
among
all
four
methods
investigated.
Our
samples
contain
total
212-PKR
223)
arising
from
three
new
1,3-benzodioxole-based
SEGPHOS
catalysts,
which
never
included
algorithm
shows
impressive
root
mean
square
error
(RMSE)
7.06
(±1.11)
%ee.
XGBoost-predicted
%ee
values
match
reasonably
well
with
results.
absolute
difference
XGBoost-calculated
ranges
0.9
7.6
majority
reactions.
fluoro-substituted-SEGPHOS
ligand
Язык: Английский