Machine learning for heterogeneous catalyst design and discovery DOI Open Access
Bryan R. Goldsmith, Jacques A. Esterhuizen,

Jin‐Xun Liu

и другие.

AIChE Journal, Год журнала: 2018, Номер 64(7), С. 2311 - 2323

Опубликована: Май 7, 2018

Язык: Английский

Semiconductor quantum dots: Technological progress and future challenges DOI
F. Pelayo Garcı́a de Arquer, Dmitri V. Talapin, Victor I. Klimov

и другие.

Science, Год журнала: 2021, Номер 373(6555)

Опубликована: Авг. 5, 2021

In quantum-confined semiconductor nanostructures, electrons exhibit distinctive behavior compared with that in bulk solids. This enables the design of materials tunable chemical, physical, electrical, and optical properties. Zero-dimensional quantum dots (QDs) offer strong light absorption bright narrowband emission across visible infrared wavelengths have been engineered to gain lasing. These properties are interest for imaging, solar energy harvesting, displays, communications. Here, we an overview advances synthesis understanding QD nanomaterials, a focus on colloidal QDs, discuss their prospects technologies such as displays lighting, lasers, sensing, electronics, conversion, photocatalysis, information.

Язык: Английский

Процитировано

1168

A mobile robotic chemist DOI

Benjamin Burger,

Phillip M. Maffettone, Vladimir V. Gusev

и другие.

Nature, Год журнала: 2020, Номер 583(7815), С. 237 - 241

Опубликована: Июль 8, 2020

Язык: Английский

Процитировано

1033

Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments DOI Creative Commons
Marian Chatenet, Bruno G. Pollet, Dario R. Dekel

и другие.

Chemical Society Reviews, Год журнала: 2022, Номер 51(11), С. 4583 - 4762

Опубликована: Янв. 1, 2022

Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, affordable is amongst the most pressing challenges for future socio-economic development.

Язык: Английский

Процитировано

1014

A robotic platform for flow synthesis of organic compounds informed by AI planning DOI

Connor W. Coley,

Dale A. Thomas,

Justin A. M. Lummiss

и другие.

Science, Год журнала: 2019, Номер 365(6453)

Опубликована: Авг. 8, 2019

Pairing prediction and robotic synthesis Progress in automated of organic compounds has been proceeding along parallel tracks. One goal is algorithmic viable routes to a desired compound; the other implementation known reaction sequence on platform that needs little no human intervention. Coley et al. now report preliminary integration these two protocols. They paired retrosynthesis algorithm with robotically reconfigurable flow apparatus. Human intervention was still required supplement predictor practical considerations such as solvent choice precise stoichiometry, although predictions should improve accessible data accumulate for training. Science , this issue p. eaax1566

Язык: Английский

Процитировано

851

Gaussian Process Regression for Materials and Molecules DOI Creative Commons
Volker L. Deringer, Albert P. Bartók, Noam Bernstein

и другие.

Chemical Reviews, Год журнала: 2021, Номер 121(16), С. 10073 - 10141

Опубликована: Авг. 16, 2021

We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on atomistic properties: particular, construction interatomic potentials, or force fields, Approximation Potential (GAP) framework; beyond this, we also discuss fitting arbitrary scalar, vectorial, tensorial quantities. Methodological aspects reference data generation, representation, regression, as well question how a data-driven model may be validated, are reviewed critically discussed. A survey applications variety research questions chemistry illustrates rapid growth field. vision outlined for development methodology years come.

Язык: Английский

Процитировано

776

Closed-loop optimization of fast-charging protocols for batteries with machine learning DOI
Peter M. Attia, Aditya Grover, Norman Jin

и другие.

Nature, Год журнала: 2020, Номер 578(7795), С. 397 - 402

Опубликована: Фев. 19, 2020

Язык: Английский

Процитировано

761

Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives DOI Creative Commons
José M. Bellosta von Colbe, J.R. Ares, Jussara Barale

и другие.

International Journal of Hydrogen Energy, Год журнала: 2019, Номер 44(15), С. 7780 - 7808

Опубликована: Фев. 13, 2019

Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, present status and future perspectives of use metal discussed. Since early 1990s, interstitial base materials Ni – hydride rechargeable batteries. For storage, systems have been developed in 2010s [1] emergency or backup power units, i. e. stationary applications. With development completion first submarines U212 A series by HDW (now Thyssen Krupp Marine Systems) 2003 its export class U214 2004, mobile applications has established, with new application fields coming into focus. last decades, huge number intermetallic partially covalent absorbing compounds identified partly more, less extensively characterized. addition, based on thermodynamic properties hydrides, gives opportunity to develop compression technology. They allow direct conversion from thermal energy gas without need any moving parts. Such compressors nowadays commercially available pressures up 200 bar. higher under development. Moreover, consisting combination high-pressure vessels proposed realistic solution on-board fuel cell vehicles. frame “Hydrogen Storage Systems Mobile Stationary Applications” Group International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based storage”, different will be scaled-up near tested range 500 g several hundred kg

Язык: Английский

Процитировано

658

QSAR without borders DOI Creative Commons
Eugene Muratov, Jürgen Bajorath, Robert P. Sheridan

и другие.

Chemical Society Reviews, Год журнала: 2020, Номер 49(11), С. 3525 - 3564

Опубликована: Янв. 1, 2020

Word cloud summary of diverse topics associated with QSAR modeling that are discussed in this review.

Язык: Английский

Процитировано

619

Deep learning for molecular design—a review of the state of the art DOI
Daniel C. Elton, Zois Boukouvalas, Mark Fuge

и другие.

Molecular Systems Design & Engineering, Год журнала: 2019, Номер 4(4), С. 828 - 849

Опубликована: Янв. 1, 2019

We review a recent groundswell of work which uses deep learning techniques to generate and optimize molecules.

Язык: Английский

Процитировано

597

Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning DOI Creative Commons
Shuaihua Lu, Qionghua Zhou, Yixin Ouyang

и другие.

Nature Communications, Год журнала: 2018, Номер 9(1)

Опубликована: Авг. 20, 2018

Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning techniques and density theory calculations, aims quickly screen HOIPs based on bandgap solve problems toxicity poor environmental stability in HOIPs. Successfully, six orthorhombic lead-free with proper solar cells room temperature thermal screened out from 5158 unexplored two them stand direct bandgaps visible region excellent stability. Essentially, close structure-property relationship mapping is established. Our can achieve high accuracy flash be applicable broad class material design.

Язык: Английский

Процитировано

590