Databases of ligand-binding pockets and protein-ligand interactions DOI Creative Commons
Kristy A. Carpenter, Russ B. Altman

Computational and Structural Biotechnology Journal, Год журнала: 2024, Номер 23, С. 1320 - 1338

Опубликована: Март 24, 2024

Many research groups and institutions have created a variety of databases curating experimental predicted data related to protein-ligand binding. The landscape available is dynamic, with new emerging established becoming defunct. Here, we review the current state that contain binding pockets interactions. We compiled list such databases, fifty-three which are currently for use. discuss variation in how defined summarize pocket-finding methods. organize into subgroups based on goals contents, describe standard use cases. also illustrate within same protein characterized differently across different databases. Finally, assess critical issues sustainability, accessibility redundancy.

Язык: Английский

ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support DOI Creative Commons
Li Fu, Shaohua Shi, Jiacai Yi

и другие.

Nucleic Acids Research, Год журнала: 2024, Номер 52(W1), С. W422 - W431

Опубликована: Апрель 4, 2024

Abstract ADMETlab 3.0 is the second updated version of web server that provides a comprehensive and efficient platform for evaluating ADMET-related parameters as well physicochemical properties medicinal chemistry characteristics involved in drug discovery process. This new release addresses limitations previous offers broader coverage, improved performance, API functionality, decision support. For supporting data endpoints, this includes 119 features, an increase 31 compared to version. The number entries 1.5 times larger than with over 400 000 entries. incorporates multi-task DMPNN architecture coupled molecular descriptors, method not only guaranteed calculation speed each endpoint simultaneously, but also achieved superior performance terms accuracy robustness. In addition, has been introduced meet growing demand programmatic access large amounts 3.0. Moreover, uncertainty estimates prediction results, aiding confident selection candidate compounds further studies experiments. publicly without need registration at: https://admetlab3.scbdd.com.

Язык: Английский

Процитировано

173

A guide to artificial intelligence for cancer researchers DOI
Raquel Pérez-López, Narmin Ghaffari Laleh, Faisal Mahmood

и другие.

Nature reviews. Cancer, Год журнала: 2024, Номер 24(6), С. 427 - 441

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

67

Machine learning for antimicrobial peptide identification and design DOI
Fangping Wan, Felix Wong, James J. Collins

и другие.

Nature Reviews Bioengineering, Год журнала: 2024, Номер 2(5), С. 392 - 407

Опубликована: Фев. 26, 2024

Язык: Английский

Процитировано

46

Antimicrobial peptides: Opportunities and challenges in overcoming resistance DOI Creative Commons

Cezara Bucataru,

Corina Ciobănaşu

Microbiological Research, Год журнала: 2024, Номер 286, С. 127822 - 127822

Опубликована: Июнь 26, 2024

Antibiotic resistance represents a global health threat, challenging the efficacy of traditional antimicrobial agents and necessitating innovative approaches to combat infectious diseases. Among these alternatives, peptides have emerged as promising candidates against resistant pathogens. Unlike antibiotics with only one target, can use different mechanisms destroy bacteria, low toxicity mammalian cells compared many conventional antibiotics. Antimicrobial (AMPs) encouraging antibacterial properties are currently employed in clinical treatment pathogen infection, cancer, wound healing, cosmetics, or biotechnology. This review summarizes discusses drug resistance, limitations challenges AMPs peptide applications for combating drug-resistant bacterial infections, strategies enhance their capabilities.

Язык: Английский

Процитировано

45

The antibiotic resistance crisis and the development of new antibiotics DOI Creative Commons
Harald Brüssow

Microbial Biotechnology, Год журнала: 2024, Номер 17(7)

Опубликована: Июль 1, 2024

The Global Burden of Disease report 2019 estimated 14 million infection-related deaths, making it the second leading cause death after ischaemic heart disease. Bacterial pathogens accounted for 7.7 deaths and attributable to bacterial antibiotic resistance amounted 1.3 million, describing a clear demand novel antibiotics. Antibiotic development had its golden age in 1930-1960. Following failures screening chemical libraries antibiotics at beginning this century, high cost launching new (estimated US$ 1.4 billion per registered drug) difficulties achieving return investment antibiotics, pharmaceutical industry has mostly left field. current Lilliput review analyses question whether scientific or economic hurdles prevented registration Scientifically, substantial progress been achieved over recent years define properties needed overcome permeation barrier Gram-negative pathogens; extending space candidates by full modular synthesis suitable molecules; bioprospecting previously 'unculturable' bacteria unusual bacteria; attacking targets on outer membrane; looking support from structural biology, genomics, molecular genetics, phylogenetic deep machine learning approaches. However, these research activities were conducted academic researchers biotech companies with limited financial resources. It thus seems that frequently described as drying pipeline, is less lack insight than mobilization monetary resources bring discoveries market despite push pull efforts public sector.

Язык: Английский

Процитировано

43

Machine learning in preclinical drug discovery DOI

Denise B. Catacutan,

Jeremie Alexander,

Autumn Arnold

и другие.

Nature Chemical Biology, Год журнала: 2024, Номер 20(8), С. 960 - 973

Опубликована: Июль 19, 2024

Язык: Английский

Процитировано

41

Antibiotic resistance: A key microbial survival mechanism that threatens public health DOI

Amna Abbas,

Alexandra Barkhouse,

Dirk Hackenberger

и другие.

Cell Host & Microbe, Год журнала: 2024, Номер 32(6), С. 837 - 851

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

29

Artificial intelligence in drug development DOI
Kang Zhang, Xin Yang, Yifei Wang

и другие.

Nature Medicine, Год журнала: 2025, Номер 31(1), С. 45 - 59

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

12

Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education DOI Creative Commons
Arne Bewersdorff, Christian Hartmann,

Marie Hornberger

и другие.

Learning and Individual Differences, Год журнала: 2025, Номер 118, С. 102601 - 102601

Опубликована: Янв. 10, 2025

Язык: Английский

Процитировано

11

Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance DOI Creative Commons
Angela Cesaro, Samuel C. Hoffman, Payel Das

и другие.

npj Antimicrobials and Resistance, Год журнала: 2025, Номер 3(1)

Опубликована: Янв. 7, 2025

Artificial intelligence (AI) has transformed infectious disease control, enhancing rapid diagnosis and antibiotic discovery. While conventional tests delay diagnosis, AI-driven methods like machine learning deep assist in pathogen detection, resistance prediction, drug These tools improve stewardship identify effective compounds such as antimicrobial peptides small molecules. This review explores AI applications diagnostics, therapy, discovery, emphasizing both strengths areas needing improvement.

Язык: Английский

Процитировано

7