A unified computational framework for single-cell data integration with optimal transport DOI Creative Commons
Kai Cao,

Qiyu Gong,

Yiguang Hong

и другие.

Nature Communications, Год журнала: 2022, Номер 13(1)

Опубликована: Дек. 1, 2022

Abstract Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well spatially resolved transcriptomic remains major challenge. Here we introduce uniPort, unified framework that combines coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common dataset-specific genes for handle the heterogeneity across datasets, it is scalable large-scale datasets. uniPort jointly embeds datasets into shared latent space. further construct reference atlas gene imputation Meanwhile, provides flexible label transfer deconvolute spatial using an plan, instead embedding We demonstrate capability by applying variety including transcriptomics, chromatin accessibility, data.

Язык: Английский

Best practices for single-cell analysis across modalities DOI Open Access
Lukas Heumos, Anna C. Schaar, Christopher Lance

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(8), С. 550 - 572

Опубликована: Март 31, 2023

Язык: Английский

Процитировано

506

The technological landscape and applications of single-cell multi-omics DOI Open Access
Alev Baysoy, Zhiliang Bai, Rahul Satija

и другие.

Nature Reviews Molecular Cell Biology, Год журнала: 2023, Номер 24(10), С. 695 - 713

Опубликована: Июнь 6, 2023

Язык: Английский

Процитировано

438

scGPT: toward building a foundation model for single-cell multi-omics using generative AI DOI
Haotian Cui, Xiaoming Wang, Hassaan Maan

и другие.

Nature Methods, Год журнала: 2024, Номер 21(8), С. 1470 - 1480

Опубликована: Фев. 26, 2024

Язык: Английский

Процитировано

255

Gene regulatory network inference in the era of single-cell multi-omics DOI
Pau Badia-i-Mompel, Lorna Wessels, Sophia Müller‐Dott

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(11), С. 739 - 754

Опубликована: Июнь 26, 2023

Язык: Английский

Процитировано

179

Organization of the human intestine at single-cell resolution DOI Creative Commons
John W. Hickey, Winston R. Becker,

Stephanie Nevins

и другие.

Nature, Год журнала: 2023, Номер 619(7970), С. 572 - 584

Опубликована: Июль 19, 2023

Abstract The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health 1 . intesting has length of over nine metres, along which there are differences structure function 2 localization individual cell types, type development trajectories detailed transcriptional programs probably drive these function. Here, to better understand differences, we evaluated the organization single cells using multiplexed imaging single-nucleus RNA open chromatin assays across eight different intestinal sites from donors. Through systematic analyses, find compositions differ substantially regions demonstrate complexity epithelial subtypes, same types organized into distinct neighbourhoods communities, highlighting immunological niches present intestine. We also map gene regulatory suggestive differentiation cascade, associate disease heritability specific types. These results describe composition, regulation for this organ, serve as an important reference understanding human biology disease.

Язык: Английский

Процитировано

153

Gene function and cell surface protein association analysis based on single-cell multiomics data DOI
Huan Hu, Zhen Feng, Hai Lin

и другие.

Computers in Biology and Medicine, Год журнала: 2023, Номер 157, С. 106733 - 106733

Опубликована: Март 1, 2023

Язык: Английский

Процитировано

90

Epigenomic dissection of Alzheimer’s disease pinpoints causal variants and reveals epigenome erosion DOI Creative Commons
Xushen Xiong, Benjamin T. James, Carles A. Boix

и другие.

Cell, Год журнала: 2023, Номер 186(20), С. 4422 - 4437.e21

Опубликована: Сен. 1, 2023

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic transcriptomic landscapes 850,000 nuclei from prefrontal cortexes 92 individuals with without to build a map the brain regulome, including profiles, regulators, co-accessibility modules, peak-to-gene links in cell-type-specific manner. We develop methods multimodal integration detecting modules using linking. show risk enriched microglial enhancers specific TFs SPI1, ELF2, RUNX1. detect 9,628 ATAC-QTL loci, which integrate alongside prioritize variant circuits. report differential accessibility late glia early neurons. Strikingly, late-stage brains global epigenome dysregulation indicative erosion cell identity loss.

Язык: Английский

Процитировано

90

Single-cell biological network inference using a heterogeneous graph transformer DOI Creative Commons
Anjun Ma, Xiaoying Wang, Jingxian Li

и другие.

Nature Communications, Год журнала: 2023, Номер 14(1)

Опубликована: Фев. 21, 2023

Abstract Single-cell multi-omics (scMulti-omics) allows the quantification of multiple modalities simultaneously to capture intricacy complex molecular mechanisms and cellular heterogeneity. Existing tools cannot effectively infer active biological networks in diverse cell types response these external stimuli. Here we present DeepMAPS for network inference from scMulti-omics. It models scMulti-omics a heterogeneous graph learns relations among cells genes within both local global contexts robust manner using multi-head transformer. Benchmarking results indicate performs better than existing clustering construction. also showcases competitive capability deriving cell-type-specific lung tumor leukocyte CITE-seq data matched diffuse small lymphocytic lymphoma scRNA-seq scATAC-seq data. In addition, deploy webserver equipped with functionalities visualizations improve usability reproducibility analysis.

Язык: Английский

Процитировано

89

Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models DOI Creative Commons
Rosa Lundbye Allesøe, Agnete Troen Lundgaard, Ricardo Hernández Medina

и другие.

Nature Biotechnology, Год журнала: 2023, Номер 41(3), С. 399 - 408

Опубликована: Янв. 2, 2023

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response treatment. However, scale heterogeneous nature multi-modal data makes integration inference a non-trivial task. We developed deep-learning-based framework, multi-omics variational autoencoders (MOVE), integrate such applied it cohort 789 people with newly diagnosed type 2 diabetes deep phenotyping from DIRECT consortium. Using silico perturbations, we identified drug-omics associations across datasets for 20 most prevalent drugs given substantially higher sensitivity than univariate statistical tests. From these, among others, novel between metformin gut microbiota as well opposite molecular responses two statins, simvastatin atorvastatin. used quantify drug-drug similarities, assess degree polypharmacy conclude that drug effects are distributed modalities.

Язык: Английский

Процитировано

61

Decoding the tumor microenvironment with spatial technologies DOI
Logan A. Walsh,

Daniela F. Quail

Nature Immunology, Год журнала: 2023, Номер 24(12), С. 1982 - 1993

Опубликована: Ноя. 27, 2023

Язык: Английский

Процитировано

60