Spatial statistics and soil mapping: A blossoming partnership under pressure DOI Creative Commons
G.B.M. Heuvelink, R. Webster

Spatial Statistics, Год журнала: 2022, Номер 50, С. 100639 - 100639

Опубликована: Фев. 15, 2022

For the better part of 20th century pedologists mapped soil by drawing boundaries between different classes which they identified from survey on foot or vehicle, supplemented air-photo interpretation, and backed an understanding landscape processes is formed. Its limitations for representing gradual spatial variation predicting conditions at unvisited sites became evident, in 1980s introduction geostatistics specifically ordinary kriging revolutionized thinking to a large extent practice. Ordinary based solely sample data variable interest—it takes no account related covariates. The latter were incorporated 1990s onward as fixed effects regression predictors, giving rise with external drift kriging. Simultaneous estimation coefficients variogram parameters best done residual maximum likelihood estimation. In recent years machine learning has become feasible huge sets environmental obtained sensors aboard satellites other sources produce digital maps. techniques are classification regression, but take correlations. Further, effectively 'black boxes'; lack transparency, their output needs be validated if trusted. They undoubtedly have merit; here stay. too, however, shortcomings when applied data, statisticians can help overcome. Spatial pedometricians still much do incorporate uncertainty into predictions, averages totals over regions, errors measurement positions data. must also communicate these uncertainties end users maps, whatever means made.

Язык: Английский

Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration DOI
Maurizio Cotrufo, Jocelyn M. Lavallee

Advances in agronomy, Год журнала: 2022, Номер unknown, С. 1 - 66

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

353

Arable lands under the pressure of multiple land degradation processes. A global perspective DOI
Remus Prăvălie, Cristian Valeriu Patriche, Pasquale Borrelli

и другие.

Environmental Research, Год журнала: 2021, Номер 194, С. 110697 - 110697

Опубликована: Янв. 10, 2021

Язык: Английский

Процитировано

263

Exploring the multiple land degradation pathways across the planet DOI
Remus Prăvălie

Earth-Science Reviews, Год журнала: 2021, Номер 220, С. 103689 - 103689

Опубликована: Май 25, 2021

Язык: Английский

Процитировано

204

Grazing and ecosystem service delivery in global drylands DOI
Fernando T. Maestre, Yoann Le Bagousse‐Pinguet, Manuel Delgado‐Baquerizo

и другие.

Science, Год журнала: 2022, Номер 378(6622), С. 915 - 920

Опубликована: Ноя. 24, 2022

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that soil, are critical to explain delivery fundamental drylands Increasing pressure reduced service in warmer species-poor drylands, whereas positive effects were observed colder species-rich areas. Considering local abiotic biotic factors is key for understanding fate dryland ecosystems under climate change increasing human pressure.

Язык: Английский

Процитировано

194

Drivers of seedling establishment success in dryland restoration efforts DOI
Nancy Shackelford, Gustavo Brant Paterno, Daniel E. Winkler

и другие.

Nature Ecology & Evolution, Год журнала: 2021, Номер 5(9), С. 1283 - 1290

Опубликована: Июль 22, 2021

Язык: Английский

Процитировано

177

Rewetting of soil: Revisiting the origin of soil CO2 emissions DOI Creative Commons
Romain L. Barnard, Steven J. Blazewicz, Mary K. Firestone

и другие.

Soil Biology and Biochemistry, Год журнала: 2020, Номер 147, С. 107819 - 107819

Опубликована: Апрель 11, 2020

Язык: Английский

Процитировано

169

Aridity and reduced soil micronutrient availability in global drylands DOI
Eduardo Moreno‐Jiménez, César Plaza, Hugo Saíz

и другие.

Nature Sustainability, Год журнала: 2019, Номер 2(5), С. 371 - 377

Опубликована: Апрель 1, 2019

Язык: Английский

Процитировано

160

Climate change impacts on water security in global drylands DOI Creative Commons
Lindsay C. Stringer, Alisher Mirzabaev, Tor A. Benjaminsen

и другие.

One Earth, Год журнала: 2021, Номер 4(6), С. 851 - 864

Опубликована: Июнь 1, 2021

Язык: Английский

Процитировано

156

Machine learning in space and time for modelling soil organic carbon change DOI
G.B.M. Heuvelink, Marcos E. Angelini, Laura Poggio

и другие.

European Journal of Soil Science, Год журнала: 2020, Номер 72(4), С. 1607 - 1623

Опубликована: Май 21, 2020

Abstract Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality climate mitigation. In this work we report on the development, implementation application a data‐driven, statistical method mapping SOC space time, using Argentina as pilot. We used quantile regression forest machine learning to predict annual stock 0–30 cm depth 250 m resolution between 1982 2017. The model was calibrated over 5,000 values from 36‐year time period 35 environmental covariates. preprocessed normalized difference vegetation index (NDVI) dynamic covariates temporal low‐pass filter allow given year depend NDVI current well preceding years. Predictions had modest variation, with an average decrease entire country 2.55 2.48 kg C −2 (equivalent decline 211 Gg C, 3.0% total Argentina). Pampa region larger estimated 4.62 4.34 (5.9%) during same period. For 2001–2015 period, predicted variation seven‐fold than that obtained Tier 1 approach Intergovernmental Panel Climate Change United Nations Convention Combat Desertification. Prediction uncertainties turned out be substantial, mainly due limited number poor spatial distribution calibration data, explanatory power Cross‐validation confirmed prediction accuracy limited, mean error 0.03 root squared 2.04 . spite large uncertainties, showed methods can space–time may yield valuable information managers policymakers, provided observation density is sufficiently large. Highlights tested use stock. 2017 3% topsoil time. greater IPCC approach. Accurate requires dense sampling

Язык: Английский

Процитировано

139

Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications DOI Creative Commons
Anandkumar Naorem, Somasundaram Jayaraman, Yash P. Dang

и другие.

Agronomy, Год журнала: 2023, Номер 13(1), С. 220 - 220

Опубликована: Янв. 11, 2023

Climate models project that many terrestrial ecosystems will become drier over the course of this century, leading to a drastic increase in global extent arid soils. In order decrease effects climate change on food security, it is crucial understand environment and constraints associated with Although aridity aboveground organisms have been studied extensively, our understanding how affects soil processes nutrient cycling lacking. One primary agricultural constraints, particularly locations, water scarcity, due which soils are characterized by sparse vegetation cover, low organic carbon, poor structure, reduced biodiversity, high rate erosion via wind. Increased limit availability essential plant nutrients crop growth, subsequently pose serious threats key ecological services. The increasing salinization another major environmental hazard further limits potential These can be ameliorated yields increased through case-specific optimization irrigation drainage management, enhancing native beneficial microbes, combinations amendments, conditioners, residue management. This review explores technologies ameliorate maintain output

Язык: Английский

Процитировано

112