Hydrophenoxylation of alkynes by gold catalysts: a mini review DOI Creative Commons
Miguel Ramos, Miquel Solà, Albert Poater

и другие.

Journal of Molecular Modeling, Год журнала: 2024, Номер 30(10)

Опубликована: Сен. 30, 2024

Язык: Английский

Ring Opening Polymerization of Six- and Eight-Membered Racemic Cyclic Esters for Biodegradable Materials DOI Open Access
Andrea Grillo, Yolanda Rusconi, Massimo Christian D’Alterio

и другие.

International Journal of Molecular Sciences, Год журнала: 2024, Номер 25(3), С. 1647 - 1647

Опубликована: Янв. 29, 2024

The low percentage of recyclability the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased interest in their substitution with more eco-friendly reliable physical and mechanical properties. Among variety known biodegradable polymers, linear aliphatic polyesters produced ring-opening (ROP) cyclic esters occupy a prominent position. polymer properties are highly dependent on macromolecule microstructure, control stereoselectivity is necessary for providing precise finely tuned In this review, we aim to outline main synthetic routes, also applications three commercially available materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), Poly(3-hydroxybutyrate) (P3HB), all easily accessible via ROP. framework, understanding origin enantioselectivity factors that determine it then crucial development suitable thermal

Язык: Английский

Процитировано

12

Catalysis in the digital age: Unlocking the power of data with machine learning DOI Creative Commons
B. Moses Abraham, M. V. Jyothirmai, Priyanka Sinha

и другие.

Wiley Interdisciplinary Reviews Computational Molecular Science, Год журнала: 2024, Номер 14(5)

Опубликована: Сен. 1, 2024

Abstract The design and discovery of new improved catalysts are driving forces for accelerating scientific technological innovations in the fields energy conversion, environmental remediation, chemical industry. Recently, use machine learning (ML) combination with experimental and/or theoretical data has emerged as a powerful tool identifying optimal various applications. This review focuses on how ML algorithms can be used computational catalysis materials science to gain deeper understanding relationships between properties their stability, activity, selectivity. development repositories, mining techniques, tools that navigate structural optimization problems highlighted, leading highly efficient sustainable future. Several data‐driven models commonly research diverse applications reaction prediction discussed. key challenges limitations using presented, which arise from catalyst's intrinsic complex nature. Finally, we conclude by summarizing potential future directions area ML‐guided catalyst development. article is categorized under: Structure Mechanism > Reaction Mechanisms Catalysis Data Science Artificial Intelligence/Machine Learning Electronic Theory Density Functional

Язык: Английский

Процитировано

9

Ligand-Based Principal Component Analysis Followed by Ridge Regression: Application to an Asymmetric Negishi Reaction DOI
H. Ray Kelly, Sanil Sreekumar, Vidhyadhar Manee

и другие.

ACS Catalysis, Год журнала: 2024, Номер 14(7), С. 5027 - 5038

Опубликована: Март 20, 2024

In this study, we introduce an approach for predicting the enantioselectivity of P-chiral monophosphorus ligands from ligand-based descriptors that can be applied to catalytic systems with small experimental datasets without reliance on mechanistic knowledge. Principal component analysis (PCA) is used map out chemical space described by steric and electronic computed dihydrobenzooxaphosphole (BOP) dihydrobenzoazaphosphole (BAP) ligands. The PCA captures trends in experimentally measured four C–C bond-forming reactions identifies "hotspots" selective provide insight into optimal balance sterics electronics each reaction. Furthermore, are train a ridge regression model quantitatively predicts Pd-catalyzed Negishi cross-coupling coefficients fundamental understanding reveal π-stacking interaction one results unexpected selectivity inversion. Overall, integrated combines qualitative quantitative (ridge regression) predictions.

Язык: Английский

Процитировано

6

Revisiting Stereoselective Propene Polymerization Mechanisms: Insights through the Activation Strain Model DOI
Eugenio Romano, Vincenzo Barone, Peter H. M. Budzelaar

и другие.

Chemistry - An Asian Journal, Год журнала: 2024, Номер 19(9)

Опубликована: Март 18, 2024

The stereoelectronic factors responsible for stereoselectivity in propene polymerization with several metallocene and post-metallocene transition metal catalysts have been revisited using a combined approach of DFT calculations, the Activation Strain Model, Natural Energy Decomposition Analysis molecular descriptor (%V

Язык: Английский

Процитировано

4

Ligand coordination controlled by monomer binding: a hint from DFT for stereoselective lactide polymerization DOI Creative Commons
Massimo Christian D’Alterio, Serena Moccia, Yolanda Rusconi

и другие.

Catalysis Science & Technology, Год журнала: 2024, Номер 14(19), С. 5624 - 5633

Опубликована: Янв. 1, 2024

Switching the preference in stereocontrolled rac -LA ROP.

Язык: Английский

Процитировано

4

Pd nanoparticles supported on modified magnetic kaolin as a novel hydrogenation catalyst DOI Creative Commons
Merat Karimi, Samahe Sadjadi, Hassan Arabi

и другие.

Surfaces and Interfaces, Год журнала: 2025, Номер unknown, С. 106037 - 106037

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Late-stage functionalization of pharmaceuticals by C–C cross-coupling enabled by wingtip-flexible N-heterocyclic carbenes DOI
Shiyi Yang, Tongliang Zhou,

Xiang Yu

и другие.

Chem Catalysis, Год журнала: 2025, Номер unknown, С. 101297 - 101297

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Computational Tools for the Prediction of Site- and Regioselectivity of Organic Reactions DOI Creative Commons
Lukas M. Sigmund,

Michele Assante,

Magnus J. Johansson

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

This article reviews computational tools for the prediction of regio- and site-selectivity organic reactions. It spans from quantum chemical procedures to deep learning models showcases application presented tools.

Язык: Английский

Процитировано

0

Advancements in Machine Learning Predicting Activation and Gibbs Free Energies in Chemical Reactions DOI Open Access
Guo‐Jin Cao

International Journal of Quantum Chemistry, Год журнала: 2025, Номер 125(7)

Опубликована: Март 19, 2025

ABSTRACT Machine learning has revolutionized computational chemistry by improving the accuracy of predicting thermodynamic and kinetic properties like activation energies Gibbs free energies, accelerating materials discovery optimizing reaction conditions in both academic industrial applications. This review investigates recent strides applying advanced machine techniques, including transfer learning, for accurately within complex chemical reactions. It thoroughly provides an extensive overview pivotal methods utilized this domain, sophisticated neural networks, Gaussian processes, symbolic regression. Furthermore, prominently highlights commonly adopted frameworks, such as Chemprop, SchNet, DeepMD, which have consistently demonstrated remarkable exceptional efficiency properties. Moreover, it carefully explores numerous influential studies that notably reported substantial successes, particularly focusing on predictive performance, diverse datasets, innovative model architectures profoundly contributed to enhancing methodologies. Ultimately, clearly underscores transformative potential significantly power intricate systems, bearing considerable implications cutting‐edge theoretical research practical

Язык: Английский

Процитировано

0

Towards the activity of twisted acyclic amides DOI Creative Commons
Michele Tomasini, Lucia Caporaso, Michal Szostak

и другие.

RSC Advances, Год журнала: 2025, Номер 15(11), С. 8207 - 8212

Опубликована: Янв. 1, 2025

N , -Boc 2 amides have emerged as the most common class of acyclic twisted that been engaged in a range C–N activation and cross-coupling processes ubiquitous amide bonds.

Язык: Английский

Процитировано

0