Deep learning based simulators for the phosphorus removal process control in wastewater treatment via deep reinforcement learning algorithms DOI Creative Commons
Esmaeel Mohammadi, Mikkel Stokholm-Bjerregaard,

Aviaja Anna Hansen

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 107992 - 107992

Опубликована: Фев. 6, 2024

Язык: Английский

Smart Water Resource Management Using Artificial Intelligence—A Review DOI Open Access
Siva Rama Krishnan Somayaji, M. K. Nallakaruppan, Rajeswari Chengoden

и другие.

Sustainability, Год журнала: 2022, Номер 14(20), С. 13384 - 13384

Опубликована: Окт. 17, 2022

Water management is one of the crucial topics discussed in most international forums. harvesting and recycling are major requirements to meet global upcoming demand water crisis, which prevalent. To achieve this, we need more emphasis on techniques that applied across various categories applications. Keeping mind population density index, there a dire implement intelligent mechanisms for effective distribution, conservation maintain quality standards purposes. The prescribed work discusses about few areas applications required efficient management. Those recent trends wastewater recycle, rainwater irrigation using Artificial Intelligence (AI) models. data acquired these purely unique also differs by type. Hence, use model or algorithm can be provide solutions all Deep Learning (DL) along with Internet things (IoT) framework facilitate designing smart system sustainable usage from natural resources. This surveys AI/DL IoT network case studies, sample statistical analysis develop an framework.

Язык: Английский

Процитировано

127

A review of artificial intelligence in water purification and wastewater treatment: Recent advancements DOI

Soma Safeer,

Ravi P. Pandey, Bushra Rehman

и другие.

Journal of Water Process Engineering, Год журнала: 2022, Номер 49, С. 102974 - 102974

Опубликована: Июль 8, 2022

Язык: Английский

Процитировано

119

The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning DOI
Nawal Taoufik, Wafaa Boumya,

Mounia Achak

и другие.

The Science of The Total Environment, Год журнала: 2021, Номер 807, С. 150554 - 150554

Опубликована: Сен. 28, 2021

Язык: Английский

Процитировано

114

Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems DOI

Nitin Kumar Singh,

Manish Yadav, Vijai Singh

и другие.

Bioresource Technology, Год журнала: 2022, Номер 369, С. 128486 - 128486

Опубликована: Дек. 14, 2022

Язык: Английский

Процитировано

103

A holistic review on how artificial intelligence has redefined water treatment and seawater desalination processes DOI
Saikat Sinha Ray, Rohit Kumar Verma, Ashutosh Singh

и другие.

Desalination, Год журнала: 2022, Номер 546, С. 116221 - 116221

Опубликована: Ноя. 9, 2022

Язык: Английский

Процитировано

74

Unlocking synergies between waste management and climate change mitigation to accelerate decarbonization through circular-economy digitalization in Indonesia DOI
Tonni Agustiono Kurniawan, Christia Meidiana, Hui Hwang Goh

и другие.

Sustainable Production and Consumption, Год журнала: 2024, Номер 46, С. 522 - 542

Опубликована: Март 13, 2024

Язык: Английский

Процитировано

59

A Review on Applications of Artificial Intelligence in Wastewater Treatment DOI Open Access
Yì Wáng, Yuhan Cheng, He Liu

и другие.

Sustainability, Год журнала: 2023, Номер 15(18), С. 13557 - 13557

Опубликована: Сен. 11, 2023

In recent years, artificial intelligence (AI), as a rapidly developing and powerful tool to solve practical problems, has attracted much attention been widely used in various areas. Owing their strong learning accurate prediction abilities, all sorts of AI models have also applied wastewater treatment (WWT) optimize the process, predict efficiency evaluate performance, so explore more cost-effective solutions WWT. this review, we summarize analyze applications Specifically, briefly introduce commonly purposes, advantages disadvantages, comprehensively review inputs, outputs, objectives major findings particular water quality monitoring, laboratory-scale research process design. Although gained great success WWT-related fields, there are some challenges limitations that hinder widespread real WWT, such low interpretability, poor model reproducibility big data demand, well lack physical significance, mechanism explanation, academic transparency fair comparison. To overcome these hurdles successfully apply make recommendations discuss future directions applications.

Язык: Английский

Процитировано

58

Livestock and poultry farm wastewater treatment and its valorization for generating value-added products: Recent updates and way forward DOI

Sakshi Vaishnav,

Tapendra Saini,

Anuj Chauhan

и другие.

Bioresource Technology, Год журнала: 2023, Номер 382, С. 129170 - 129170

Опубликована: Май 15, 2023

Язык: Английский

Процитировано

49

Artificial intelligence and water quality: From drinking water to wastewater DOI
Christian Hazael Pérez-Beltrán, Alicia Robles, N. Rodríguez

и другие.

TrAC Trends in Analytical Chemistry, Год журнала: 2024, Номер 172, С. 117597 - 117597

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

19

Artificial Neural Network Modeling for the Prediction, Estimation, and Treatment of Diverse Wastewaters: A Comprehensive Review and Future Perspective DOI
Muhammad Ibrahim, Adnan Haider, Jun Wei Lim

и другие.

Chemosphere, Год журнала: 2024, Номер 362, С. 142860 - 142860

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

18