Chinese Political Science Review, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 10, 2024
Язык: Английский
Chinese Political Science Review, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 10, 2024
Язык: Английский
Chinese Political Science Review, Год журнала: 2025, Номер unknown
Опубликована: Фев. 20, 2025
Язык: Английский
Процитировано
4Chinese Political Science Review, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 7, 2024
Язык: Английский
Процитировано
5Chinese Political Science Review, Год журнала: 2025, Номер unknown
Опубликована: Янв. 8, 2025
Язык: Английский
Процитировано
0Chinese Political Science Review, Год журнала: 2025, Номер unknown
Опубликована: Янв. 11, 2025
Язык: Английский
Процитировано
0Healthcare, Год журнала: 2025, Номер 13(7), С. 785 - 785
Опубликована: Апрель 1, 2025
Background/Objective: As the global aging population grows, digital leisure services have emerged as a potential solution to improve older adults' social engagement, cognitive stimulation, and overall well-being. However, their adoption remains limited because of literacy gaps, psychological barriers, varying levels adaptability. This study aims analyze predict intention adopt by integrating psychosocial factors, demographic characteristics, adaptability using artificial intelligence (AI)-based predictive models. Methods: utilized data from 2022 Urban Policy Indicator Survey conducted in Seoul, South Korea, selecting 2239 individuals aged 50 years above. A two-step clustering approach was employed: hierarchical estimated optimal number clusters, K-means finalized segmentation. An neural network (ANN) model applied likelihood incorporating variables. Logistic regression used for validation, performance assessed through accuracy, precision, recall, F1-score. Results: Four distinct clusters were identified based on media engagement. Cluster 3 (highly educated males 60s with family support) showed highest probability (84.35%) despite low 4 (older women high usage) exhibited lower structured services. The ANN achieved an classification accuracy 85.2%, highlighting key determinant adoption. Conclusions: These findings underscore need targeted policy interventions, including tailored education programs, intergenerational training, simplified platform designs enhance accessibility. Future research should further explore factors influencing validate AI-based predictions real-world behavioral data.
Язык: Английский
Процитировано
0Journal of Chinese Governance, Год журнала: 2025, Номер unknown, С. 1 - 28
Опубликована: Апрель 4, 2025
Язык: Английский
Процитировано
0Journal of Chinese Governance, Год журнала: 2025, Номер unknown, С. 1 - 21
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Journal of Chinese Political Science, Год журнала: 2025, Номер unknown
Опубликована: Апрель 7, 2025
Язык: Английский
Процитировано
0Chinese Political Science Review, Год журнала: 2025, Номер unknown
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0Chinese Political Science Review, Год журнала: 2024, Номер unknown
Опубликована: Дек. 28, 2024
Язык: Английский
Процитировано
2