A fuzzy rough sets-based data-driven approach for quantifying local and overall fuzzy relations between variables for spatial data DOI
Hexiang Bai,

Junhao Jing,

Deyu Li

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 162, С. 111848 - 111848

Опубликована: Июнь 11, 2024

Язык: Английский

Ecological assessment and driver analysis of high vegetation cover areas based on new remote sensing index DOI Creative Commons
Xiaoyong Zhang, Weiwei Jia,

Shixin Lu

и другие.

Ecological Informatics, Год журнала: 2024, Номер 82, С. 102786 - 102786

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

14

Evaluate Water Yield and Soil Conservation and Their Environmental Gradient Effects in Fujian Province in South China Based on InVEST and Geodetector Models DOI Open Access
Tianhang Li, Xiaojun Wang,

Hong Jia

и другие.

Water, Год журнала: 2025, Номер 17(2), С. 230 - 230

Опубликована: Янв. 16, 2025

Fujian Province is an important soil and water conservation region in hilly South China. However, there has been limited attention paid to the assessment of production at provincial level, distribution patterns ecosystem services under different environmental gradients regions have not revealed. This study evaluated spatiotemporal characteristics yield based on InVEST model 2000, 2010, 2020, explored their differences six gradients: elevation, slope, terrain position index, geomorphy, LULC, NDVI. The results statistics showed significant spatial differentiation temporal change yield; changes both exhibited obvious clustering cold hot spots (low high values); cities were higher than those conservation. index Geodetector that retention gradients; generally lower degree more sensitive response factors (slope, TPI, DEM). high-value 1000 2160 m for DEM, 25° 70.2° 0.81 1.42 medium mountain forest land 0.9 0.92 NDVI, which indicates mountainous with altitude, steep slopes, changes, vegetation coverage. exhibit distributions across gradients, should be adapting local conditions ecological environment development.

Язык: Английский

Процитировано

2

Research on the cool island effect of green spaces in megacity cores: A case study of the main urban area of Xi'an, China DOI
Kaili Zhang,

Qiqi Liu,

Bin Fang

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106255 - 106255

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Built environments, communities, and housing price: A data-model integration approach DOI

Wei Hong,

Yimin Chen, Bin Chen

и другие.

Applied Geography, Год журнала: 2024, Номер 166, С. 103270 - 103270

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

8

The dynamic patterns of critical ecological areas in the Yellow River Basin are driven primarily by climate factors but threatened by human activities DOI
Yunlong Zhang, Zhengyuan Zhao, Jie Zhu

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 371, С. 123282 - 123282

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

6

Evaluating the Influence of Biophysical Factors in Explaining Spatial Heterogeneity of LST: Insights from Brahmani-Dwarka Interfluve Leveraging Geodetector, GWR, and MGWR Models DOI
Bhaskar Mandal, Kaushalendra Prakash Goswami

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2024, Номер 138, С. 103836 - 103836

Опубликована: Дек. 9, 2024

Язык: Английский

Процитировано

5

Tackling the modifiable areal unit problem: Enhancing urban sustainability through improved land surface temperature and its influencing factors analysis DOI
Haojian Deng, Kai Liu, Jiali Feng

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 114, С. 105747 - 105747

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

4

Assessing terrestrial water storage dynamics and multiple factors driving forces in China from 2005 to 2020 DOI
Renke Ji, Chao Wang, Aoxue Cui

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122464 - 122464

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

4

A multimodal framework for extraction and fusion of satellite images and public health data DOI Creative Commons

Dana Moukheiber,

David Restrepo, Sebastián Andrés Cajas

и другие.

Scientific Data, Год журнала: 2024, Номер 11(1)

Опубликована: Июнь 15, 2024

Abstract In low- and middle-income countries, the substantial costs associated with traditional data collection pose an obstacle to facilitating decision-making in field of public health. Satellite imagery offers a potential solution, but image extraction analysis can be costly requires specialized expertise. We introduce SatelliteBench, scalable framework for satellite vector embeddings generation. also propose novel multimodal fusion pipeline that utilizes series metadata. The was evaluated generating dataset 12,636 images accompanied by comprehensive metadata, from 81 municipalities Colombia between 2016 2018. then 3 tasks: including dengue case prediction, poverty assessment, access education. performance showcases versatility practicality offering reproducible, accessible open tool enhance

Язык: Английский

Процитировано

3

An explainable spatial interpolation method considering spatial stratified heterogeneity DOI
Shifen Cheng, Wenhui Zhang,

Peng Luo

и другие.

International Journal of Geographical Information Science, Год журнала: 2024, Номер unknown, С. 1 - 27

Опубликована: Ноя. 14, 2024

Spatial interpolation is essential for handling sparsity and missing spatial data. Current machine learning-based methods are subject to the statistical constraints of stratified heterogeneity (SSH), normally involving separate modeling each stratum simple weighted averaging integrate intra-stratum inter-strata features. However, these models overlook different contributions features locations within a (heterogeneous associations, HIA) explanation effects on process, leading suboptimal unreliable outcomes. This article proposes novel explainable method considering SSH (X-SSHM). environmental utilized describe information, which fed into random forest-based learners achieve high-level semantic feature mapping. Geographically regression employed unified expression HIA, obtaining final result. Shapley (GSHAP) proposed decompose marginal Model performance evaluated simulated soil organic matter datasets. X-SSHM outperformed five baselines regarding accuracy. Moreover, validated X-SSHM's ability elucidate mechanisms by SSH, autocorrelation HIA affect model process.

Язык: Английский

Процитировано

3