Deep Learning for Antimicrobial Peptides: Computational Models and Databases DOI

Xiangrun Zhou,

Guixia Liu,

Shuyuan Cao

и другие.

Journal of Chemical Information and Modeling, Год журнала: 2025, Номер unknown

Опубликована: Фев. 10, 2025

Antimicrobial peptides are a promising strategy to combat antimicrobial resistance. However, the experimental discovery of is both time-consuming and laborious. In recent years, development computational technologies (especially deep learning) has provided new opportunities for peptide prediction. Various models have been proposed predict peptide. this review, we focus on learning We first collected summarized available data resources peptides. Subsequently, existing discussed their limitations challenges. This study aims help biologists design better

Язык: Английский

Deep learning for advancing peptide drug development: Tools and methods in structure prediction and design DOI
Xinyi Wu, Huitian Lin, Renren Bai

и другие.

European Journal of Medicinal Chemistry, Год журнала: 2024, Номер 268, С. 116262 - 116262

Опубликована: Фев. 19, 2024

Язык: Английский

Процитировано

14

Recent advances in the development of antimicrobial peptides against ESKAPE pathogens DOI Creative Commons
Cesar Augusto Roque‐Borda,

Laura Maria Duran Gleriani Primo,

Henrik Franzyk

и другие.

Heliyon, Год журнала: 2024, Номер 10(11), С. e31958 - e31958

Опубликована: Май 24, 2024

Язык: Английский

Процитировано

14

CODENET: A deep learning model for COVID-19 detection DOI

Hong Ju,

Yanyan Cui,

Qiaosen Su

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 171, С. 108229 - 108229

Опубликована: Фев. 29, 2024

Язык: Английский

Процитировано

13

A BERT-based model for the prediction of lncRNA subcellular localization in Homo sapiens DOI Creative Commons
Zhao‐Yue Zhang, Zheng Zhang, Xiucai Ye

и другие.

International Journal of Biological Macromolecules, Год журнала: 2024, Номер 265, С. 130659 - 130659

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

12

msBERT-Promoter: a multi-scale ensemble predictor based on BERT pre-trained model for the two-stage prediction of DNA promoters and their strengths DOI Creative Commons
Yazi Li, Xiaoman Wei, Qinglin Yang

и другие.

BMC Biology, Год журнала: 2024, Номер 22(1)

Опубликована: Май 30, 2024

A promoter is a specific sequence in DNA that has transcriptional regulatory functions, playing role initiating gene expression. Identifying promoters and their strengths can provide valuable information related to human diseases. In recent years, computational methods have gained prominence as an effective means for identifying promoter, offering more efficient alternative labor-intensive biological approaches.

Язык: Английский

Процитировано

12

Integrated convolution and self-attention for improving peptide toxicity prediction DOI Creative Commons
Shihu Jiao, Xiucai Ye, Tetsuya Sakurai

и другие.

Bioinformatics, Год журнала: 2024, Номер 40(5)

Опубликована: Май 1, 2024

Abstract Motivation Peptides are promising agents for the treatment of a variety diseases due to their specificity and efficacy. However, development peptide-based drugs is often hindered by potential toxicity peptides, which poses significant barrier clinical application. Traditional experimental methods evaluating peptide time-consuming costly, making process inefficient. Therefore, there an urgent need computational tools specifically designed predict accurately rapidly, facilitating identification safe candidates drug development. Results We provide here novel approach, CAPTP, leverages power convolutional self-attention enhance prediction from amino acid sequences. CAPTP demonstrates outstanding performance, achieving Matthews correlation coefficient approximately 0.82 in both cross-validation settings on independent test datasets. This performance surpasses that existing state-of-the-art predictors. Importantly, maintains its robustness generalizability even when dealing with data imbalances. Further analysis reveals certain sequential patterns, particularly head central regions crucial determining toxicity. insight can significantly inform guide design safer drugs. Availability implementation The source code freely available at https://github.com/jiaoshihu/CAPTP.

Язык: Английский

Процитировано

11

MIBPred: Ensemble Learning-Based Metal Ion-Binding Protein Classifier DOI Creative Commons
Hongqi Zhang,

Shanghua Liu,

Rui Li

и другие.

ACS Omega, Год журнала: 2024, Номер unknown

Опубликована: Фев. 8, 2024

In biological organisms, metal ion-binding proteins participate in numerous metabolic activities and are closely associated with various diseases. To accurately predict whether a protein binds to ions the type of protein, this study proposed classifier named MIBPred. The incorporated advanced Word2Vec technology from field natural language processing extract semantic features sequence combined them position-specific score matrix (PSSM) features. Furthermore, an ensemble learning model was employed for classification task. model, we independently trained XGBoost, LightGBM, CatBoost algorithms integrated output results through SVM voting mechanism. This innovative combination has led significant breakthrough predictive performance our model. As result, achieved accuracies 95.13% 85.19%, respectively, predicting their types. Our research not only confirms effectiveness extracting information sequences but also highlights outstanding MIBPred problem provides reliable tool method in-depth exploration structure function proteins.

Язык: Английский

Процитировано

10

iAMP-Attenpred: a novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model DOI Creative Commons
Wenxuan Xing, Jie Zhang, Chen Li

и другие.

Briefings in Bioinformatics, Год журнала: 2023, Номер 25(1)

Опубликована: Ноя. 22, 2023

Abstract As a kind of small molecule protein that can fight against various microorganisms in nature, antimicrobial peptides (AMPs) play an indispensable role maintaining the health organisms and fortifying defenses diseases. Nevertheless, experimental approaches for AMP identification still demand substantial allocation human resources material inputs. Alternatively, computing assist researchers effectively promptly predict AMPs. In this study, we present novel predictor called iAMP-Attenpred. far as know, is first work not only employs popular BERT model field natural language processing (NLP) AMPs feature encoding, but also utilizes idea combining multiple models to discover Firstly, treat each amino acid from preprocessed non-AMP sequences word, then input it into pre-training extraction. Moreover, features obtained method are fed composite composed one-dimensional CNN, BiLSTM attention mechanism better discriminating features. Finally, flatten layer fully connected layers utilized final classification Experimental results reveal that, compared with existing predictors, our iAMP-Attenpred achieves performance indicators, such accuracy, precision so on. This further demonstrates using approach capture effective information peptide deep learning meaningful predicting

Язык: Английский

Процитировано

24

Inter- and intra-uncertainty based feature aggregation model for semi-supervised histopathology image segmentation DOI
Qiangguo Jin, Hui Cui, Changming Sun

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 122093 - 122093

Опубликована: Окт. 14, 2023

Язык: Английский

Процитировано

18

ACVPred: Enhanced prediction of anti-coronavirus peptides by transfer learning combined with data augmentation DOI

Yi Xu,

Tianyuan Liu, Yu Yang

и другие.

Future Generation Computer Systems, Год журнала: 2024, Номер 160, С. 305 - 315

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

9