Опубликована: Окт. 28, 2024
Язык: Английский
Опубликована: Окт. 28, 2024
Язык: Английский
Fundamental Research, Год журнала: 2024, Номер unknown
Опубликована: Фев. 1, 2024
The development of applications based on artificial intelligence and implemented over wireless networks is increasingly rapidly expected to grow dramatically in the future. resulting demand for aggregation large amounts data has caused serious communication bottlenecks particularly at network edge. Over-the-air federated learning (OTA-FL), leveraging superposition feature multi-access channels (MACs), enables users edge share spectrum resources achieves efficient low-latency global model aggregation. This paper provides a holistic review progress OTA-FL points potential future research directions. Specifically, we classify from perspective system settings, including single-antenna OTA-FL, multi-antenna with aid emerging reconfigurable intelligent surface (RIS) technology, contributions existing works these areas are summarized. Moreover, discuss trust, security privacy aspects highlight concerns arising privacy. Finally, challenges directions discussed promote terms improving performance, reliability, trustworthiness. Specifical be addressed include distortion under channel fading, ineffective OTA local models trained substantially unbalanced data, limited accessibility verifiability individual models.
Язык: Английский
Процитировано
9IEEE Access, Год журнала: 2025, Номер 13, С. 15272 - 15289
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Ad Hoc Networks, Год журнала: 2025, Номер unknown, С. 103761 - 103761
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Computers & Electrical Engineering, Год журнала: 2025, Номер 123, С. 110070 - 110070
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
1IEEE Transactions on Artificial Intelligence, Год журнала: 2024, Номер 5(7), С. 3743 - 3756
Опубликована: Март 18, 2024
In the era of deep learning, federated learning (FL) presents a promising approach that allows multi-institutional data owners, or clients, to collaboratively train machine models without compromising privacy. However, most existing FL approaches rely on centralized server for global model aggregation, leading single point failure. This makes system vulnerable malicious attacks when dealing with dishonest clients. this work, we address problem by proposing secure and reliable based blockchain distributed ledger technology. Our incorporates peer-to-peer voting mechanism reward-and-slash mechanism, which are powered on-chain smart contracts, detect deter behaviors. Both theoretical empirical analyses presented demonstrate effectiveness proposed approach, showing our framework is robust against client-side
Язык: Английский
Процитировано
5Computers & Security, Год журнала: 2025, Номер unknown, С. 104361 - 104361
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 300 - 314
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Future Internet, Год журнала: 2025, Номер 17(2), С. 87 - 87
Опубликована: Фев. 13, 2025
Training deep learning models collaboratively on decentralized edge devices has attracted significant attention recently. The two most prominent schemes for this problem are Federated Learning (FL) and Split (SL). Although there have been several surveys experimental evaluations FL in the literature, SL paradigms not yet systematically reviewed evaluated. Due to diversity of terms label sharing, model aggregation, cut layer selection, etc., lack a systematic survey makes it difficult fairly conveniently compare performance different paradigms. To address above issue, paper, we first provide comprehensive review existing Then, implement typical perform extensive experiments their scenarios four widely used datasets. results engineering advice research insights We hope that our work can facilitate future by establishing fair accessible benchmark evaluation.
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 145 - 160
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Discover Internet of Things, Год журнала: 2025, Номер 5(1)
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
0