Displays, Год журнала: 2025, Номер unknown, С. 103042 - 103042
Опубликована: Апрель 1, 2025
Язык: Английский
Displays, Год журнала: 2025, Номер unknown, С. 103042 - 103042
Опубликована: Апрель 1, 2025
Язык: Английский
2021 IEEE/CVF International Conference on Computer Vision (ICCV), Год журнала: 2023, Номер unknown, С. 8081 - 8090
Опубликована: Окт. 1, 2023
Multi-modality image fusion and segmentation play a vital role in autonomous driving robotic operation. Early efforts focus on boosting the performance for only one task, e.g., or segmentation, making it hard to reach 'Best of Both Worlds'. To overcome this issue, paper, we propose Multi-interactive Feature learning architecture Segmentation, namely SegMiF, exploit dual-task correlation promote both tasks. The SegMiF is cascade structure, containing sub-network commonly used sub-network. By slickly bridging intermediate features between two components, knowledge learned from task can effectively assist task. Also, benefited network supports perform more pretentiously. Besides, hierarchical interactive attention block established ensure fine-grained mapping all information tasks, so that modality/semantic be fully mutual-interactive. In addition, dynamic weight factor introduced automatically adjust corresponding weights each which balance feature correspondence break through limitation laborious tuning. Furthermore, construct smart multi-wave binocular imaging system collect full-time multi-modality benchmark with 15 annotated pixel-level categories segmentation. Extensive experiments several public datasets our demonstrate proposed method outputs visually appealing fused images averagely 7.66% higher mIoU real-world scene than state-of-the-art approaches. source code are available at https://github.com/JinyuanLiu-CV/SegMiF.
Язык: Английский
Процитировано
77Information Fusion, Год журнала: 2023, Номер 103, С. 102147 - 102147
Опубликована: Ноя. 15, 2023
Язык: Английский
Процитировано
64International Journal of Computer Vision, Год журнала: 2023, Номер 132(5), С. 1748 - 1775
Опубликована: Дек. 8, 2023
Язык: Английский
Процитировано
63Information Fusion, Год журнала: 2024, Номер 110, С. 102450 - 102450
Опубликована: Май 3, 2024
Язык: Английский
Процитировано
262022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Год журнала: 2024, Номер abs/2004.10934, С. 25912 - 25921
Опубликована: Июнь 16, 2024
Процитировано
16IEEE Transactions on Pattern Analysis and Machine Intelligence, Год журнала: 2024, Номер 46(10), С. 6594 - 6609
Опубликована: Март 27, 2024
Image fusion plays a key role in variety of multi-sensor-based vision systems, especially for enhancing visual quality and/or extracting aggregated features perception. However, most existing methods just consider image as an individual task, thus ignoring its underlying relationship with these downstream problems. Furthermore, designing proper architectures often requires huge engineering labor. It also lacks mechanisms to improve the flexibility and generalization ability current approaches. To mitigate issues, we establish Task-guided, Implicit-searched Meta-initialized (TIM) deep model address problem challenging real-world scenario. Specifically, first propose constrained strategy incorporate information from tasks guide unsupervised learning process fusion. Within this framework, then design implicit search scheme automatically discover compact our high efficiency. In addition, pretext meta initialization technique is introduced leverage divergence data support fast adaptation different kinds tasks. Qualitative quantitative experimental results on categories problems related (e.g., enhancement semantic understanding) substantiate effectiveness TIM.
Язык: Английский
Процитировано
15Information Fusion, Год журнала: 2025, Номер unknown, С. 102944 - 102944
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Expert Systems with Applications, Год журнала: 2023, Номер 235, С. 121156 - 121156
Опубликована: Авг. 11, 2023
Язык: Английский
Процитировано
32Опубликована: Авг. 1, 2023
Recently, multi-modality scene perception tasks, e.g., image fusion and understanding, have attracted widespread attention for intelligent vision systems. However, early efforts always consider boosting a single task unilaterally neglecting others, seldom investigating their underlying connections joint promotion. To overcome these limitations, we establish the hierarchical dual tasks-driven deep model to bridge tasks. Concretely, firstly construct an module fuse complementary characteristics cascade task-related modules, including discriminator visual effects semantic network feature measurement. We provide bi-level perspective formulate follow-up downstream incorporate distinct responses fusion, as primary goal modules learnable constraints. Furthermore, develop efficient first-order approximation compute corresponding gradients present dynamic weighted aggregation balance learning. Extensive experiments demonstrate superiority of our method, which not only produces visually pleasant fused results but also realizes significant promotion detection segmentation than state-of-the-art approaches.
Язык: Английский
Процитировано
252022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Год журнала: 2024, Номер unknown, С. 27016 - 27025
Опубликована: Июнь 16, 2024
Язык: Английский
Процитировано
13