Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102750 - 102750
Опубликована: Авг. 8, 2024
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102750 - 102750
Опубликована: Авг. 8, 2024
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(20), С. 57279 - 57301
Опубликована: Апрель 5, 2023
Язык: Английский
Процитировано
113Computers & Operations Research, Год журнала: 2023, Номер 158, С. 106304 - 106304
Опубликована: Июнь 15, 2023
Язык: Английский
Процитировано
51Swarm and Evolutionary Computation, Год журнала: 2023, Номер 80, С. 101338 - 101338
Опубликована: Май 24, 2023
Язык: Английский
Процитировано
47Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 130, С. 107721 - 107721
Опубликована: Янв. 5, 2024
Язык: Английский
Процитировано
25IEEE Transactions on Industrial Informatics, Год журнала: 2024, Номер 20(4), С. 6855 - 6865
Опубликована: Янв. 25, 2024
Disassembly line balancing (DLB) is used for efficient task planning of large-scale end-of-life products, which a key issue to realize resource recycling and reuse. Robot disassembly U-shaped station layout can effectively improve efficiency. To accurately characterize the problem, mixed-integer linear programming model robotic DLB proposed. The aim minimize cycle time shorten offline product. Since there are many dynamic disturbances in actual line, traditional optimization methods suitable dealing with static problems, this article develops deep reinforcement learning approach based on problem characteristics, namely Q network (DQN), achieve lines. Eight state features ten heuristic action rules designed proposed DQN describe environment completely. effectiveness superiority verified by numerical experiments. In case laptop not only robots reduced, but also intelligent decision-making tasks realized.
Язык: Английский
Процитировано
16Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 38 - 69
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
2Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 128, С. 107458 - 107458
Опубликована: Ноя. 15, 2023
Язык: Английский
Процитировано
39International Journal of Environmental Science and Technology, Год журнала: 2023, Номер 21(1), С. 791 - 804
Опубликована: Июнь 9, 2023
Язык: Английский
Процитировано
36Journal of Computational Design and Engineering, Год журнала: 2023, Номер 10(4), С. 1707 - 1735
Опубликована: Июль 4, 2023
Abstract Marine container terminals play a significant role for international trade networks and global market. To cope with the rapid steady growth of seaborne market, marine terminal operators must address operational challenges appropriate analytical methods to meet needs The berth allocation scheduling problem is one important decisions faced by during operations planning. optimization schedule strongly associated spatial temporal resources. An optimal robust remarkably improves productivity competitiveness seaport. A number studies have been conducted over last years. Thus, there an existing need comprehensive critical literature survey analyze state-of-the-art research progress, developing tendencies, current shortcomings, potential future directions. Therefore, this study thoroughly selected scientific manuscripts dedicated problem. identified were categorized based on attributes, including discrete, continuous, hybrid problems. detailed review was performed categories. representative mathematical formulation each category presented along summary various considerations characteristics every study. specific emphasis given solution adopted. shortcomings outlined state-of-the-art. This expectation assisting community relevant stakeholders scheduling.
Язык: Английский
Процитировано
31Environmental Science and Pollution Research, Год журнала: 2023, Номер unknown
Опубликована: Апрель 22, 2023
Язык: Английский
Процитировано
30