From Technology‐Challenged Teachers to Empowered Digitalized Citizens: Exploring the Profiles and Antecedents of Teacher AI Literacy in the Chinese EFL Context
European Journal of Education,
Год журнала:
2025,
Номер
60(1), С. 1 - 16
Опубликована: Янв. 27, 2025
ABSTRACT
Artificial
Intelligence
(AI)
literacy
has
come
to
the
spotlight,
empowering
individuals
adeptly
navigate
modern
digitalised
world.
However,
studies
on
teacher
AI
in
English
as
a
Foreign
Language
(EFL)
context
remain
limited.
This
study
aims
identify
intraindividual
differences
and
examine
its
associations
with
age
years
of
teaching
experience
among
782
teachers.
Given
absence
reliable
instrument
measure
literacy,
we
first
constructed
validated
scale
encompassing
five
sub‐scales:
Knowledge
,
Use
Assessment
Design
Ethics
.
Subsequently,
latent
profile
analysis
(LPA)
was
conducted
using
Mplus
7.4,
results
revealing
four
distinct
profiles:
Poor
(C1:
12.1%),
Moderate
(C2:
45.5%),
Good
(C3:
28.4%),
Excellent
(C4:
14.1%).
Multinomial
logistic
regression
analyses
indicated
significant
between
both
experience.
Additionally,
32
respondents
participated
semi‐structured
interviews.
The
qualitative
data
analysed
MAXQDA
2022
triangulated
quantitative
offered
deeper
insights
into
teachers’
perceptions
their
literacy.
provides
theoretical
practical
implications
for
understanding
Chinese
EFL
context.
Язык: Английский
Personalized stem education empowered by artificial intelligence: a comprehensive review and content analysis
Interactive Learning Environments,
Год журнала:
2025,
Номер
unknown, С. 1 - 23
Опубликована: Фев. 11, 2025
Язык: Английский
Exploring human and AI collaboration in inclusive STEM teacher training: A synergistic approach based on self-determination theory
The Internet and Higher Education,
Год журнала:
2025,
Номер
unknown, С. 101003 - 101003
Опубликована: Фев. 1, 2025
Язык: Английский
Latent Profile Analysis of AI Literacy and Trust in Mathematics Teachers and Their Relations with AI Dependency and 21st-Century Skills
Behavioral Sciences,
Год журнала:
2024,
Номер
14(11), С. 1008 - 1008
Опубликована: Окт. 30, 2024
Artificial
Intelligence
(AI)
technology,
particularly
generative
AI,
has
positively
impacted
education
by
enhancing
mathematics
instruction
with
personalized
learning
experiences
and
improved
data
analysis.
Nonetheless,
variations
in
AI
literacy,
trust
dependency
on
these
technologies
among
teachers
can
significantly
influence
their
development
of
21st-century
skills
such
as
self-confidence,
problem-solving,
critical
thinking,
creative
collaboration.
This
study
aims
to
identify
distinct
profiles
trust,
examines
how
correlate
the
aforementioned
skills.
Using
a
cross-sectional
research
design,
collected
from
489
China.
A
robust
three-step
latent
profile
analysis
method
was
utilized
analyze
data.
The
revealed
five
literacy
teachers:
(1)
Basic
Engagement;
(2)
Developing
Literacy,
Skeptical
AI;
(3)
Balanced
Competence;
(4)
Advanced
Integration;
(5)
Expertise
Confidence.
found
that
an
increase
directly
correlates
decrease
findings
underscore
need
for
careful
integration
educational
settings.
Excessive
reliance
lead
detrimental
dependencies,
which
may
hinder
essential
contributes
existing
literature
providing
empirical
evidence
impact
professional
teachers.
It
also
offers
practical
implications
policymakers
institutions
consider
balanced
approaches
integration,
ensuring
enhances
rather
than
replaces
thinking
problem-solving
capacities
educators.
Язык: Английский
The impact of TPACK on teachers’ willingness to integrate generative artificial intelligence (GenAI): The moderating role of negative emotions and the buffering effects of need satisfaction
Yiming Yang,
Qi Xia,
C. C. Liu
и другие.
Teaching and Teacher Education,
Год журнала:
2024,
Номер
154, С. 104877 - 104877
Опубликована: Ноя. 26, 2024
Язык: Английский
STEM-TPAB Öz-Yeterlik Ölçeği: Türkçeye Uyarlama Çalışması
Uludağ Üniversitesi Eğitim Fakültesi Dergisi,
Год журнала:
2024,
Номер
37(2), С. 798 - 829
Опубликована: Авг. 13, 2024
Bütünleştirilmiş
Fen,
Teknoloji,
Mühendislik
ve
Matematik
(b-STEM)
eğitimi
21.
yüzyılda
ilerletmenin
en
iyi
pedagojik
yollarından
birisi
olarak
görülmektedir.
Ancak
STEM
eğitimini
güçlü
bir
şekilde
uygularken
öğretmen
adaylarının
ihtiyaç
duyduğu
bilgi
türleri
üzerine
geliştirilmiş
geçerli
güvenilir
ölçekler
oldukça
sınırlıdır.
Bu
çalışmanın
amacı
Chai
diğerleri
(2019)
tarafından
geliştirilen
öğretmenlerin/öğretmen
Teknoloji
Pedagoji
Alan
Bilgisi
(TPAB)
çerçevesinde
öz-yeterliklerini
ölçmeyi
amaçlayan
STEM-TPAB
ölçeğinin
Türkçeye
uyarlamasını
yapmaktır.
Orijinali
17
maddeden
oluşan
ölçeğin
C.S.
sağlanan
24
maddelik
ön
madde
havuzu
üzerinden
uyarlama
çalışması
gerçekleştirilmiştir.
Uyarlama
çalışmasına
14
akademisyen
çeşitli
aşamalar
için
fen
bilgisi,
matematik,
sınıf,
BÖTE
İngilizce
öğretmenliği
bölümlerinden
olmak
üzere
toplam
523
adayı
katılmıştır.
Madde-toplam
korelasyonu,
açımlayıcı
doğrulayıcı
faktör
analizleri
yeterli
güvenirlik
geçerlik
değerlerine
sahip
olduğunu
göstermiştir.
Ölçek
orijinal
yapısına
uygun
uyarlanmıştır.
Uyarlanan
ölçek
gelecek
çalışmalarda
TPAB
belirlemek,
derslerini
yürütmek
ihtiyaçlarını
STEM’in
çoklu
bileşenlerini
desteklemek
mesleki
gelişim
kurslarının
çıktılarını
ölçmek
karşılaştırmalar
yapmak
amacıyla
kullanılabilir.
Unveiling the Drivers of AI Integration Among Language Teachers: Integrating UTAUT and AI-TPACK
Computers in the Schools,
Год журнала:
2024,
Номер
unknown, С. 1 - 21
Опубликована: Дек. 14, 2024
Artificial
intelligence
(AI)
offers
numerous
benefits
to
the
field
of
language
education,
making
it
crucial
understand
factors
influencing
teachers'
adoption
these
technologies.
This
study
investigates
determinants
AI
chatbots
in
educational
settings.
Drawing
on
Unified
Theory
Acceptance
and
Use
Technology
(UTAUT)
Technological
Pedagogical
Content
Knowledge
(TPACK)
framework,
a
comprehensive
model
among
teachers
is
proposed
tested.
Data
were
collected
from
276
Vietnam
through
an
online
survey.
Partial
Least
Square-Structural
Equation
Modeling
(PLS-SEM)
was
employed
analyze
data.
Results
indicate
that
intent
significantly
predicts
integration,
while
performance
expectancy,
effort
self-efficacy
are
key
intent.
AI-TPACK
emerges
as
factor,
strongly
self-efficacy,
expectancy.
Facilitation
found
be
significant
predictor
AI-TPACK.
These
findings
enhance
theoretical
framework
education
provide
valuable
insights
for
fostering
effective
integration
teachers.
Язык: Английский