Chemosphere, Год журнала: 2008, Номер 74(3), С. 349 - 362
Опубликована: Ноя. 9, 2008
Язык: Английский
Chemosphere, Год журнала: 2008, Номер 74(3), С. 349 - 362
Опубликована: Ноя. 9, 2008
Язык: Английский
Science, Год журнала: 2016, Номер 353(6305), С. 1272 - 1277
Опубликована: Сен. 15, 2016
Microbial metabolism powers biogeochemical cycling in Earth’s ecosystems. The taxonomic composition of microbial communities varies substantially between environments, but the ecological causes this variation remain largely unknown. We analyzed and functional community profiles to determine factors that shape marine bacterial archaeal across global ocean. By classifying >30,000 microorganisms into metabolic groups, we were able disentangle from variation. find environmental conditions strongly influence distribution groups by shaping niches, only weakly within individual groups. Hence, structure constitute complementary roughly independent “axes variation” shaped markedly different processes.
Язык: Английский
Процитировано
2579Nature Reviews Microbiology, Год журнала: 2018, Номер 16(7), С. 410 - 422
Опубликована: Май 23, 2018
Язык: Английский
Процитировано
1419Nature Protocols, Год журнала: 2020, Номер 15(3), С. 799 - 821
Опубликована: Янв. 15, 2020
Язык: Английский
Процитировано
1404Nature, Год журнала: 2009, Номер 459(7244), С. 193 - 199
Опубликована: Май 1, 2009
Язык: Английский
Процитировано
1254Nature Reviews Microbiology, Год журнала: 2015, Номер 13(3), С. 133 - 146
Опубликована: Фев. 9, 2015
Язык: Английский
Процитировано
768Frontiers in Microbiology, Год журнала: 2016, Номер 7
Опубликована: Апрель 20, 2016
The advent of next generation sequencing (NGS) has enabled investigations the gut microbiome with unprecedented resolution and throughput. This stimulated development sophisticated bioinformatics tools to analyze massive amounts data generated. Researchers therefore need a clear understanding key concepts required for design, execution interpretation NGS experiments on microbiomes. We conducted literature review used our own determine which approaches work best. two main analyzing microbiome, 16S ribosomal RNA (rRNA) gene amplicons shotgun metagenomics, are illustrated analyses libraries designed highlight their strengths weaknesses. Several methods taxonomic classification bacterial sequences discussed. present simulations assess number that perform reliable appraisals community structure. To extent fluctuations in diversity populations correlate health disease, we emphasize various techniques analysis communities within samples (α-diversity) between (β-diversity). Finally, demonstrate infer metabolic capabilities bacteria from these data.
Язык: Английский
Процитировано
768PLoS ONE, Год журнала: 2012, Номер 7(2), С. e30126 - e30126
Опубликована: Фев. 3, 2012
We introduce Dirichlet multinomial mixtures (DMM) for the probabilistic modelling of microbial metagenomics data. This data can be represented as a frequency matrix giving number times each taxa is observed in sample. The samples have different size, and sparse, communities are diverse skewed to rare taxa. Most methods used previously classify or cluster ignored these features. describe community by vector probabilities. These vectors generated from one finite mixture components with hyperparameters. Observed through sampling. into distinct 'metacommunities', and, hence, determine envirotypes enterotypes, groups similar composition. model also deduce impact treatment classification. wrote software fitting DMM models using 'evidence framework' (http://code.google.com/p/microbedmm/). includes Laplace approximation evidence. applied human gut microbe genera frequencies Obese Lean twins. From evidence four clusters fit this best. Two were dominated Bacteroides homogenous; two had more variable could not find significant body mass on structure. However, twins likely derive high variance clusters. propose that obesity associated microbiota but increases chance an individual derives disturbed enterotype. example 'Anna Karenina principle (AKP)' communities: states having many configurations than undisturbed. verify showing study inflammatory bowel disease (IBD) phenotypes, ileal Crohn's (ICD) community.
Язык: Английский
Процитировано
766Journal of Allergy and Clinical Immunology, Год журнала: 2010, Номер 127(2), С. 372 - 381.e3
Опубликована: Дек. 31, 2010
Язык: Английский
Процитировано
654bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2018, Номер unknown
Опубликована: Апрель 11, 2018
Abstract Summary Microbial community analysis using 16S rRNA gene amplicon sequencing is the backbone of many microbial ecology studies. Several approaches and pipelines exist for processing raw data generated through DNA convert into OTU-tables. Here we present ampvis2, an R package designed in OTU-table format with focus on simplicity, reproducibility, sample metadata integration, a minimal set intuitive commands. Unique features include flexible heatmaps simplified ordination. By generating plots ggplot2 package, ampvis2 produces publication-ready figures that can be easily customised. Furthermore, includes interactive visualisation, which convenient larger, more complex data. Availability implemented statistical language released under GNU A-GPL license. Documentation website source code maintained at: https://github.com/MadsAlbertsen/ampvis2 Contact Mads Albertsen ( [email protected] )
Язык: Английский
Процитировано
635Nature Reviews Microbiology, Год журнала: 2015, Номер 13(6), С. 360 - 372
Опубликована: Апрель 27, 2015
Язык: Английский
Процитировано
621