Machine learning-assisted development of gas separation membranes: A review DOI Creative Commons

An Li,

Jianchun Chu, Shaoxuan Huang

и другие.

Carbon Capture Science & Technology, Год журнала: 2025, Номер 14, С. 100374 - 100374

Опубликована: Янв. 30, 2025

Язык: Английский

Emerging Trends in Machine Learning: A Polymer Perspective DOI Creative Commons
Tyler B. Martin, Debra J. Audus

ACS Polymers Au, Год журнала: 2023, Номер 3(3), С. 239 - 258

Опубликована: Янв. 18, 2023

In the last five years, there has been tremendous growth in machine learning and artificial intelligence as applied to polymer science. Here, we highlight unique challenges presented by polymers how field is addressing them. We focus on emerging trends with an emphasis topics that have received less attention review literature. Finally, provide outlook for field, outline important areas science discuss advances from greater material community.

Язык: Английский

Процитировано

85

Polymeric membranes for industrial applications: Recent progress, challenges and perspectives DOI

Sachin Karki,

Gauri Hazarika,

Diksha Yadav

и другие.

Desalination, Год журнала: 2023, Номер 573, С. 117200 - 117200

Опубликована: Дек. 4, 2023

Язык: Английский

Процитировано

82

Membranes for CO2 capture and separation: Progress in research and development for industrial applications DOI
Zhongde Dai, Liyuan Deng

Separation and Purification Technology, Год журнала: 2023, Номер 335, С. 126022 - 126022

Опубликована: Дек. 14, 2023

Язык: Английский

Процитировано

68

Rethinking the pathway to sustainable fire retardants DOI Creative Commons

Jiabing Feng,

Lei Liu, Yan Zhang

и другие.

Exploration, Год журнала: 2023, Номер 3(4)

Опубликована: Июль 6, 2023

Flame retardants are currently used in a wide range of industry sectors for saving lives and property by mitigating fire hazards. The growing safety requirements materials boost an escalating demand consumption retardants. This has significantly driven both the scientific community to pursue sustainable retardants, but what makes flame retardant? Here overview recent advances is offered, their renewable raw materials, green synthesis life cycle assessments highlighted. A discussion on key challenges that hinder innovation design principles creating truly yet cost-effective also presented. short work expected help drive development sustainable, expedite creation more safer society.

Язык: Английский

Процитировано

48

Design of functional and sustainable polymers assisted by artificial intelligence DOI
Tran Doan Huan, Rishi Gurnani,

Chiho Kim

и другие.

Nature Reviews Materials, Год журнала: 2024, Номер 9(12), С. 866 - 886

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

26

Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures DOI Creative Commons
Vera Kuznetsova, Áine Coogan,

Dmitry Botov

и другие.

Advanced Materials, Год журнала: 2024, Номер 36(18)

Опубликована: Янв. 19, 2024

Abstract Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design discovery, reducing need for time‐consuming labor‐intensive experiments simulations. In contrast to their achiral counterparts, application machine chiral nanomaterials is still its infancy, with a limited number publications date. This despite great advance development new sustainable high values optical activity, circularly polarized luminescence, enantioselectivity, as well analysis structural chirality by electron microscopy. this review, an methods used studying provided, subsequently offering guidance on adapting extending work nanomaterials. An overview within framework synthesis–structure–property–application relationships presented insights how leverage study these highly complex are provided. Some key recent reviewed discussed Finally, review captures achievements, ongoing challenges, prospective outlook very important field.

Язык: Английский

Процитировано

24

Machine Learning in Membrane Design: From Property Prediction to AI-Guided Optimization DOI Creative Commons
Zhonglin Cao, Omid Barati Farimani, Janghoon Ock

и другие.

Nano Letters, Год журнала: 2024, Номер 24(10), С. 2953 - 2960

Опубликована: Март 4, 2024

Porous membranes, either polymeric or two-dimensional materials, have been extensively studied because of their outstanding performance in many applications such as water filtration. Recently, inspired by the significant success machine learning (ML) areas scientific discovery, researchers started to tackle problem field membrane design using data-driven ML tools. In this Mini Review, we summarize research efforts on three types design, including (1) property prediction ML, (2) gaining physical insight and drawing quantitative relationships between properties explainable artificial intelligence, (3) ML-guided optimization, virtual screening membranes. On top review previous research, discuss challenges associated with applying for potential future directions.

Язык: Английский

Процитировано

18

MOF membranes for gas separations DOI
Yiming Zhang, Hang Yin,

Lingzhi Huang

и другие.

Progress in Materials Science, Год журнала: 2025, Номер unknown, С. 101432 - 101432

Опубликована: Янв. 1, 2025

Процитировано

3

Machine Learning Approaches in Polymer Science: Progress and Fundamental for a New Paradigm DOI Creative Commons
Chunhui Xie, Haoke Qiu, Lu Liu

и другие.

SmartMat, Год журнала: 2025, Номер 6(1)

Опубликована: Янв. 9, 2025

ABSTRACT Machine learning (ML), material genome, and big data approaches are highly overlapped in their strategies, algorithms, models. They can target various definitions, distributions, correlations of concerned physical parameters given polymer systems, have expanding applications as a new paradigm indispensable to conventional ones. Their inherent advantages building quantitative multivariate largely enhanced the capability scientific understanding discoveries, thus facilitating mechanism exploration, prediction, high‐throughput screening, optimization, rational inverse designs. This article summarizes representative progress recent two decades focusing on design, preparation, application, sustainable development materials based exploration key composition–process–structure–property–performance relationship. The integration both data‐driven insights through ML deepen fundamental discover novel is categorically presented. Despite construction application robust models, strategies algorithms deal with variant tasks science still rapid growth. challenges prospects then We believe that innovation will thrive along approaches, from efficient design applications.

Язык: Английский

Процитировано

2

High-efficiency water transport and boron removal in polyamide membranes enabled by surface-grafted self-assembled monolayer molecular brushes DOI

Jinlong He,

Jishan Wu, Yaxuan Yang

и другие.

Journal of Membrane Science, Год журнала: 2025, Номер unknown, С. 123722 - 123722

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2