Nature, Год журнала: 2016, Номер 539(7628), С. 309 - 313
Опубликована: Ноя. 1, 2016
Язык: Английский
Nature, Год журнала: 2016, Номер 539(7628), С. 309 - 313
Опубликована: Ноя. 1, 2016
Язык: Английский
Nature Communications, Год журнала: 2017, Номер 8(1)
Опубликована: Янв. 16, 2017
Abstract Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting tens thousands single per sample. Cell encapsulation, up 8 samples at time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate system’s technical performance, we collected data from ∼250k across 29 samples. validated sensitivity and its ability detect rare populations using lines synthetic RNAs. profiled 68k peripheral blood mononuclear characterize large immune populations. Finally, used sequence variation determine host donor chimerism single-cell resolution bone marrow isolated transplant patients.
Язык: Английский
Процитировано
6008Science, Год журнала: 2016, Номер 352(6282), С. 189 - 196
Опубликована: Апрель 7, 2016
To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, endothelial cells. Malignant within same tumor displayed transcriptional heterogeneity associated with cell cycle, spatial context, a drug-resistance program. In particular, all tumors harbored malignant two states, such that characterized by high levels MITF transcription factor also contained low elevated AXL kinase. Single-cell analyses suggested microenvironmental patterns, including cell-to-cell interactions. Analysis tumor-infiltrating T revealed exhaustion programs, their connection activation clonal expansion, variability across patients. Overall, begin unravel cellular ecosystem how genomics offers insights implications for both targeted immune therapies.
Язык: Английский
Процитировано
4324Cell, Год журнала: 2015, Номер 162(1), С. 184 - 197
Опубликована: Июнь 18, 2015
Язык: Английский
Процитировано
2168Cell, Год журнала: 2017, Номер 171(7), С. 1611 - 1624.e24
Опубликована: Ноя. 30, 2017
Язык: Английский
Процитировано
2167Nature, Год журнала: 2015, Номер 523(7561), С. 486 - 490
Опубликована: Июнь 17, 2015
Язык: Английский
Процитировано
2096Cellular and Molecular Immunology, Год журнала: 2020, Номер 17(8), С. 807 - 821
Опубликована: Июль 1, 2020
Abstract Immunotherapy has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types immunotherapy, including adoptive cell transfer (ACT) immune checkpoint inhibitors (ICIs), have obtained durable clinical responses, but their efficacies vary, only subsets patients can benefit from them. Immune infiltrates in microenvironment (TME) been shown to play a key role development will affect outcomes patients. Comprehensive profiling tumor-infiltrating cells would shed light on mechanisms cancer–immune evasion, thus providing opportunities for novel therapeutic strategies. However, highly heterogeneous dynamic nature TME impedes precise dissection intratumoral cells. With recent advances single-cell technologies such as RNA sequencing (scRNA-seq) mass cytometry, systematic interrogation is feasible provide insights into functional diversities In this review, we outline progress particularly by focusing landmark studies characterization tumor-associated cells, summarize phenotypic connections with immunotherapy. We believe review could strengthen our understanding facilitate elucidation modulation progression, guide immunotherapies treatment.
Язык: Английский
Процитировано
2091Cell, Год журнала: 2019, Номер 178(4), С. 835 - 849.e21
Опубликована: Июль 18, 2019
Язык: Английский
Процитировано
2033Nature Methods, Год журнала: 2018, Номер 15(12), С. 1053 - 1058
Опубликована: Ноя. 21, 2018
Язык: Английский
Процитировано
1819Nature, Год журнала: 2016, Номер 529(7586), С. 298 - 306
Опубликована: Янв. 1, 2016
Язык: Английский
Процитировано
1773Molecular Systems Biology, Год журнала: 2019, Номер 15(6)
Опубликована: Июнь 1, 2019
Single-cell RNA-seq has enabled gene expression to be studied at an unprecedented resolution. The promise of this technology is attracting a growing user base for single-cell analysis methods. As more tools are becoming available, it increasingly difficult navigate landscape and produce up-to-date workflow analyse one's data. Here, we detail the steps typical analysis, including pre-processing (quality control, normalization, data correction, feature selection, dimensionality reduction) cell- gene-level downstream analysis. We formulate current best-practice recommendations these based on independent comparison studies. have integrated into workflow, which apply public dataset further illustrate how work in practice. Our documented case study can found https://www.github.com/theislab/single-cell-tutorial This review will serve as tutorial new entrants field, help established users update their pipelines.
Язык: Английский
Процитировано
1748