Keeping Your Brain in Balance: Homeostatic Regulation of Network Function DOI
Wei Wen, Gina G. Turrigiano

Annual Review of Neuroscience, Год журнала: 2024, Номер 47(1), С. 41 - 61

Опубликована: Фев. 21, 2024

To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity maintain stable function. This dynamic fine-tuning is accomplished through a rich array cellular homeostatic plasticity mechanisms that stabilize important network features such as firing rates, information flow, sensory tuning properties. Further, these functional properties can stabilized by different forms plasticity, including target or synapses, regulate intrinsic neuronal excitability. Here we discuss which aspects circuit function are under control, how this homeostasis realized on molecular levels, pathological consequences when impaired. A remaining challenge elucidate diverse cooperate within complex circuits enable them both flexible stable.

Язык: Английский

Mechanisms of systems memory consolidation during sleep DOI
Jens G. Klinzing, Niels Niethard, Jan Born

и другие.

Nature Neuroscience, Год журнала: 2019, Номер 22(10), С. 1598 - 1610

Опубликована: Авг. 26, 2019

Язык: Английский

Процитировано

996

The AMPA Receptor Code of Synaptic Plasticity DOI Creative Commons
Graham H. Diering, Richard L. Huganir

Neuron, Год журнала: 2018, Номер 100(2), С. 314 - 329

Опубликована: Окт. 1, 2018

Язык: Английский

Процитировано

736

Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior DOI Creative Commons
Ee-Lynn Yap, Michael E. Greenberg

Neuron, Год журнала: 2018, Номер 100(2), С. 330 - 348

Опубликована: Окт. 1, 2018

Язык: Английский

Процитировано

561

Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut DOI Creative Commons
Alexandra Vaccaro,

Yosef Kaplan Dor,

Keishi Nambara

и другие.

Cell, Год журнала: 2020, Номер 181(6), С. 1307 - 1328.e15

Опубликована: Июнь 1, 2020

Язык: Английский

Процитировано

391

CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development DOI Creative Commons

Emily K. Lehrman,

Daniel K. Wilton, Elizabeth Y. Litvina

и другие.

Neuron, Год журнала: 2018, Номер 100(1), С. 120 - 134.e6

Опубликована: Окт. 1, 2018

Язык: Английский

Процитировано

389

Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity DOI Creative Commons

Menglong Zeng,

Xudong Chen, Dongshi Guan

и другие.

Cell, Год журнала: 2018, Номер 174(5), С. 1172 - 1187.e16

Опубликована: Авг. 1, 2018

Язык: Английский

Процитировано

383

Brain mechanisms of insomnia: new perspectives on causes and consequences DOI
Eus J.W. Van Someren

Physiological Reviews, Год журнала: 2020, Номер 101(3), С. 995 - 1046

Опубликована: Авг. 13, 2020

While insomnia is the second most common mental disorder, progress in our understanding of underlying neurobiological mechanisms has been limited. The present review addresses definition and prevalence explores its subjective objective characteristics across 24-hour day. Subsequently, extensively how vulnerability to develop affected by genetic variants, early life stress, major events, brain structure function. Further supported clear health risks conveyed insomnia, integrated findings suggest that could rather be found circuits regulating emotion arousal than involved circadian homeostatic sleep regulation. Finally, a testable model presented. proposes people with locus coeruleus more sensitive to-or receives input from-the salience network related circuits, even during rapid eye movement sleep, when it should normally sound asleep. This may ignite downward spiral insufficient overnight adaptation distress, resulting accumulating hyperarousal, which, turn, impedes restful moreover increases risk other adversity. Sensitized are likely subjectively experienced as "sleeping one open". proposed opens up possibility for novel intervention studies animal studies, thus accelerating ignition neuroscience which direly needed better treatment.

Язык: Английский

Процитировано

371

Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution DOI Open Access
Ruixuan Gao, Shoh Asano, Srigokul Upadhyayula

и другие.

Science, Год журнала: 2019, Номер 363(6424)

Опубликована: Янв. 18, 2019

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of brain. However, optical offers insufficient resolution to reveal subcellular details, lacks throughput molecular contrast visualize specific constituents over millimeter-scale or larger dimensions. We combined expansion lattice light-sheet image nanoscale spatial relationships between proteins across thickness mouse cortex entire Drosophila These included synaptic at dendritic spines, myelination along axons, presynaptic densities dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies neural development, sexual dimorphism, degree stereotypy, structural correlations behavior activity, all with contrast.

Язык: Английский

Процитировано

363

The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function DOI
Frank Raven, Eddy A. van der Zee, Peter Meerlo

и другие.

Sleep Medicine Reviews, Год журнала: 2017, Номер 39, С. 3 - 11

Опубликована: Май 18, 2017

Язык: Английский

Процитировано

282

Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science DOI Creative Commons
Decebal Constantin Mocanu, Elena Mocanu, Peter Stone

и другие.

Nature Communications, Год журнала: 2018, Номер 9(1)

Опубликована: Июнь 13, 2018

Through the success of deep learning in various domains, artificial neural networks are currently among most used intelligence methods. Taking inspiration from network properties biological (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) networks, too, should not have fully-connected layers. Here propose sparse evolutionary training an algorithm which evolves initial topology (Erd\H{o}s-R\'enyi random graph) two consecutive layers neurons into a scale-free topology, during learning. Our method replaces with ones before training, reducing quadratically number parameters, no decrease accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional for unsupervised supervised 15 datasets. approach has potential enable scale up beyond what is possible.

Язык: Английский

Процитировано

270