Robustness of Spike Deconvolution for Neuronal Calcium Imaging DOI Creative Commons
Marius Pachitariu, Carsen Stringer, Kenneth D. Harris

и другие.

Journal of Neuroscience, Год журнала: 2018, Номер 38(37), С. 7976 - 7985

Опубликована: Авг. 6, 2018

Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals challenging problem. We compared multiple approaches using datasets with ground truth electrophysiology and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. introduce novel benchmark applicable recordings without electrophysiological truth, based correlation responses two stimulus repeats, used this show unconstrained NND also when run “zoomed out” ∼10,000 cell visual cortex mice either sex. Finally, we NND-based methods match performance supervised convolutional networks while avoiding some biases such methods, at much faster running times. therefore recommend spikes be inferred traces because its simplicity, efficiency, accuracy. SIGNIFICANCE STATEMENT The experimental currently allows for largest numbers cells simultaneously two-photon imaging. However, use requires neuronal firing correctly large resulting datasets. Previous studies have claimed complex learning outperform task. Unfortunately, these suffered several problems biases. When repeated analysis, same data correcting problems, simpler inference perform better. Even more importantly, can artifactual structure into trains, which turn lead erroneous scientific conclusions. Of evaluated, an extremely performed best circumstances tested, was run, insensitive parameter choices, making incorrect conclusions less likely.

Язык: Английский

Single-trial neural dynamics are dominated by richly varied movements DOI
Simon Musall, Matthew T. Kaufman, Ashley Juavinett

и другие.

Nature Neuroscience, Год журнала: 2019, Номер 22(10), С. 1677 - 1686

Опубликована: Сен. 24, 2019

Язык: Английский

Процитировано

1021

Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings DOI
Nicholas A. Steinmetz, Çağatay Aydın, Anna Lebedeva

и другие.

Science, Год журнала: 2021, Номер 372(6539)

Опубликована: Апрель 15, 2021

Measuring the dynamics of neural processing across time scales requires following spiking thousands individual neurons over milliseconds and months. To address this need, we introduce Neuropixels 2.0 probe together with newly designed analysis algorithms. The has more than 5000 sites is miniaturized to facilitate chronic implants in small mammals recording during unrestrained behavior. High-quality recordings long were reliably obtained mice rats six laboratories. Improved site density arrangement combined created data methods enable automatic post hoc correction for brain movements, allowing from same 2 These probes algorithms stable free behavior, even animals such as mice.

Язык: Английский

Процитировано

814

Distributed coding of choice, action and engagement across the mouse brain DOI
Nicholas A. Steinmetz, Peter Zatka-Haas, Matteo Carandini

и другие.

Nature, Год журнала: 2019, Номер 576(7786), С. 266 - 273

Опубликована: Ноя. 27, 2019

Язык: Английский

Процитировано

654

Computation Through Neural Population Dynamics DOI
Saurabh Vyas, Matthew D. Golub, David Sussillo

и другие.

Annual Review of Neuroscience, Год журнала: 2020, Номер 43(1), С. 249 - 275

Опубликована: Июль 8, 2020

Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover nature associated computations, how they are implemented, what role play in driving behavior. We term this computation through population dynamics. If successful, framework will reveal general motifs quantitatively describe dynamics implement computations necessary for goal-directed Here, we start with a mathematical primer on dynamical systems theory analytical tools apply perspective experimental data. Next, highlight some recent discoveries resulting from successful application systems. focus studies spanning motor control, timing, decision-making, working memory. Finally, briefly discuss promising lines investigation future directions framework.

Язык: Английский

Процитировано

531

High-dimensional geometry of population responses in visual cortex DOI
Carsen Stringer, Marius Pachitariu, Nicholas A. Steinmetz

и другие.

Nature, Год журнала: 2019, Номер 571(7765), С. 361 - 365

Опубликована: Июнь 26, 2019

Язык: Английский

Процитировано

524

Survey of spiking in the mouse visual system reveals functional hierarchy DOI
Joshua H. Siegle, Xiaoxuan Jia, Séverine Durand

и другие.

Nature, Год журнала: 2021, Номер 592(7852), С. 86 - 92

Опубликована: Янв. 20, 2021

Язык: Английский

Процитировано

486

Computational Neuroethology: A Call to Action DOI Creative Commons
Sandeep Robert Datta, David J. Anderson, Kristin Branson

и другие.

Neuron, Год журнала: 2019, Номер 104(1), С. 11 - 24

Опубликована: Окт. 1, 2019

Язык: Английский

Процитировано

395

Deep learning tools for the measurement of animal behavior in neuroscience DOI
Mackenzie Weygandt Mathis, Alexander Mathis

Current Opinion in Neurobiology, Год журнала: 2019, Номер 60, С. 1 - 11

Опубликована: Ноя. 29, 2019

Язык: Английский

Процитировано

383

Physical reservoir computing—an introductory perspective DOI Creative Commons
Kohei Nakajima

Japanese Journal of Applied Physics, Год журнала: 2020, Номер 59(6), С. 060501 - 060501

Опубликована: Апрель 27, 2020

Understanding the fundamental relationships between physics and its information-processing capability has been an active research topic for many years. Physical reservoir computing is a recently introduced framework that allows one to exploit complex dynamics of physical systems as devices. This particularly suited edge devices, in which information processing incorporated at (e.g., into sensors) decentralized manner reduce adaptation delay caused by data transmission overhead. paper aims illustrate potentials using examples from soft robotics provide concise overview focusing on basic motivations introducing it, stem number fields, including machine learning, nonlinear dynamical systems, biological science, materials physics.

Язык: Английский

Процитировано

317

A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection DOI Creative Commons
Brad K. Hulse, Hannah Haberkern, Romain Franconville

и другие.

eLife, Год журнала: 2021, Номер 10

Опубликована: Окт. 26, 2021

Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which experimentally challenging study. In insects, circuit dynamics a region called the central complex (CX) enable directed locomotion, sleep, and context- experience-dependent spatial navigation. We describe first complete electron microscopy-based connectome of

Язык: Английский

Процитировано

307