
Neuron, Год журнала: 2022, Номер 110(15), С. 2409 - 2421.e3
Опубликована: Июнь 8, 2022
Язык: Английский
Neuron, Год журнала: 2022, Номер 110(15), С. 2409 - 2421.e3
Опубликована: Июнь 8, 2022
Язык: Английский
Nature, Год журнала: 2022, Номер 602(7895), С. 123 - 128
Опубликована: Янв. 12, 2022
The medial entorhinal cortex is part of a neural system for mapping the position an individual within physical environment
Язык: Английский
Процитировано
294Nature Reviews Methods Primers, Год журнала: 2022, Номер 2(1)
Опубликована: Июль 21, 2022
Язык: Английский
Процитировано
273Nature Neuroscience, Год журнала: 2022, Номер 25(1), С. 11 - 19
Опубликована: Янв. 1, 2022
Язык: Английский
Процитировано
259Nature, Год журнала: 2021, Номер 594(7864), С. 541 - 546
Опубликована: Июнь 9, 2021
Язык: Английский
Процитировано
256Proceedings of the IEEE, Год журнала: 2023, Номер 111(9), С. 1016 - 1054
Опубликована: Сен. 1, 2023
The
brain
is
the
perfect
place
to
look
for
inspiration
develop
more
efficient
neural
networks.
inner
workings
of
our
synapses
and
neurons
provide
a
glimpse
at
what
future
deep
learning
might
like.
This
article
serves
as
tutorial
perspective
showing
how
apply
lessons
learned
from
several
decades
research
in
learning,
gradient
descent,
backpropagation,
neuroscience
biologically
plausible
spiking
networks
(SNNs).
We
also
explore
delicate
interplay
between
encoding
data
spikes
process;
challenges
solutions
applying
gradient-based
SNNs;
subtle
link
temporal
backpropagation
spike
timing-dependent
plasticity;
move
toward
online
learning.
Some
ideas
are
well
accepted
commonly
used
among
neuromorphic
engineering
community,
while
others
presented
or
justified
first
time
here.
A
series
companion
interactive
tutorials
complementary
this
using
Python
package,
Язык: Английский
Процитировано
246Nature Electronics, Год журнала: 2023, Номер 6(2), С. 109 - 118
Опубликована: Фев. 2, 2023
Язык: Английский
Процитировано
195Nature Neuroscience, Год журнала: 2022, Номер 25(2), С. 252 - 263
Опубликована: Янв. 31, 2022
Язык: Английский
Процитировано
194Nature reviews. Neuroscience, Год журнала: 2022, Номер 23(12), С. 744 - 766
Опубликована: Ноя. 3, 2022
Язык: Английский
Процитировано
193bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown
Опубликована: Янв. 7, 2023
Spike sorting is the computational process of extracting firing times single neurons from recordings local electrical fields. This an important but hard problem in neuroscience, complicated by non-stationarity and dense overlap fields between nearby neurons. To solve spike problem, we have continuously developed over past eight years a framework known as Kilosort. paper describes various algorithmic steps introduced different versions We also report development Kilosort4, new version with substantially improved performance due to clustering algorithms inspired graph-based approaches. test Kilosort, realistic simulation which uses densely sampled real experiments generate non-stationary waveforms noise. find that nearly all Kilosort outperform other on variety simulated conditions, Kilosort4 performs best cases, correctly identifying even low amplitudes small spatial extents high drift conditions.
Язык: Английский
Процитировано
161Frontiers in Science, Год журнала: 2023, Номер 1
Опубликована: Фев. 28, 2023
Recent advances in human stem cell-derived brain organoids promise to replicate critical molecular and cellular aspects of learning memory possibly cognition vitro . Coining the term “organoid intelligence” (OI) encompass these developments, we present a collaborative program implement vision multidisciplinary field OI. This aims establish OI as form genuine biological computing that harnesses using scientific bioengineering an ethically responsible manner. Standardized, 3D, myelinated can now be produced with high cell density enriched levels glial cells gene expression for learning. Integrated microfluidic perfusion systems support scalable durable culturing, spatiotemporal chemical signaling. Novel 3D microelectrode arrays permit high-resolution electrophysiological signaling recording explore capacity recapitulate mechanisms formation and, ultimately, their computational potential. Technologies could enable novel biocomputing models via stimulus-response training organoid-computer interfaces are development. We envisage complex, networked whereby connected real-world sensors output devices, ultimately each other sensory organ (e.g. retinal organoids), trained biofeedback, big-data warehousing, machine methods. In parallel, emphasize embedded ethics approach analyze ethical raised by research iterative, manner involving all relevant stakeholders. The many possible applications this urge strategic development discipline. anticipate OI-based allow faster decision-making, continuous during tasks, greater energy data efficiency. Furthermore, “intelligence-in-a-dish” help elucidate pathophysiology devastating developmental degenerative diseases (such dementia), potentially aiding identification therapeutic approaches address major global unmet needs.
Язык: Английский
Процитировано
158