High-density single-unit human cortical recordings using the Neuropixels probe DOI Creative Commons
Jason E. Chung, Kristin K. Sellers, Matthew K. Leonard

и другие.

Neuron, Год журнала: 2022, Номер 110(15), С. 2409 - 2421.e3

Опубликована: Июнь 8, 2022

Язык: Английский

Toroidal topology of population activity in grid cells DOI Creative Commons
Richard J. Gardner, Erik Hermansen, Marius Pachitariu

и другие.

Nature, Год журнала: 2022, Номер 602(7895), С. 123 - 128

Опубликована: Янв. 12, 2022

The medial entorhinal cortex is part of a neural system for mapping the position an individual within physical environment

Язык: Английский

Процитировано

294

Optogenetics for light control of biological systems DOI
Valentina Emiliani, Emilia Entcheva, Rainer Hedrich

и другие.

Nature Reviews Methods Primers, Год журнала: 2022, Номер 2(1)

Опубликована: Июль 21, 2022

Язык: Английский

Процитировано

273

Large-scale neural recordings call for new insights to link brain and behavior DOI
Anne E. Urai, Brent Doiron, Andrew M. Leifer

и другие.

Nature Neuroscience, Год журнала: 2022, Номер 25(1), С. 11 - 19

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

259

Representational drift in primary olfactory cortex DOI
Carl E. Schoonover, Sarah Ohashi, Richard Axel

и другие.

Nature, Год журнала: 2021, Номер 594(7864), С. 541 - 546

Опубликована: Июнь 9, 2021

Язык: Английский

Процитировано

256

Training Spiking Neural Networks Using Lessons From Deep Learning DOI Creative Commons
Jason K. Eshraghian, Max Ward, Emre Neftci

и другие.

Proceedings of the IEEE, Год журнала: 2023, Номер 111(9), С. 1016 - 1054

Опубликована: Сен. 1, 2023

The brain is the perfect place to look for inspiration develop more efficient neural networks. inner workings of our synapses and neurons provide a glimpse at what future deep learning might like. This article serves as tutorial perspective showing how apply lessons learned from several decades research in learning, gradient descent, backpropagation, neuroscience biologically plausible spiking networks (SNNs). We also explore delicate interplay between encoding data spikes process; challenges solutions applying gradient-based SNNs; subtle link temporal backpropagation spike timing-dependent plasticity; move toward online learning. Some ideas are well accepted commonly used among neuromorphic engineering community, while others presented or justified first time here. A series companion interactive tutorials complementary this using Python package, snnTorch , made available: https://snntorch.readthedocs.io/en/latest/tutorials/index.html.

Язык: Английский

Процитировано

246

Flexible brain–computer interfaces DOI
Xin Tang, Hao Shen, Siyuan Zhao

и другие.

Nature Electronics, Год журнала: 2023, Номер 6(2), С. 109 - 118

Опубликована: Фев. 2, 2023

Язык: Английский

Процитировано

195

Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex DOI
Angelique C. Paulk, Yoav Kfir, Arjun Khanna

и другие.

Nature Neuroscience, Год журнала: 2022, Номер 25(2), С. 252 - 263

Опубликована: Янв. 31, 2022

Язык: Английский

Процитировано

194

Attractor and integrator networks in the brain DOI

Mikail Khona,

Ila Fiete

Nature reviews. Neuroscience, Год журнала: 2022, Номер 23(12), С. 744 - 766

Опубликована: Ноя. 3, 2022

Язык: Английский

Процитировано

193

Solving the spike sorting problem with Kilosort DOI Creative Commons
Marius Pachitariu, Shashwat Sridhar, Carsen Stringer

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Янв. 7, 2023

Spike sorting is the computational process of extracting firing times single neurons from recordings local electrical fields. This an important but hard problem in neuroscience, complicated by non-stationarity and dense overlap fields between nearby neurons. To solve spike problem, we have continuously developed over past eight years a framework known as Kilosort. paper describes various algorithmic steps introduced different versions We also report development Kilosort4, new version with substantially improved performance due to clustering algorithms inspired graph-based approaches. test Kilosort, realistic simulation which uses densely sampled real experiments generate non-stationary waveforms noise. find that nearly all Kilosort outperform other on variety simulated conditions, Kilosort4 performs best cases, correctly identifying even low amplitudes small spatial extents high drift conditions.

Язык: Английский

Процитировано

161

Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish DOI Creative Commons
Lena Smirnova, Brian Caffo, David H. Gracias

и другие.

Frontiers in Science, Год журнала: 2023, Номер 1

Опубликована: Фев. 28, 2023

Recent advances in human stem cell-derived brain organoids promise to replicate critical molecular and cellular aspects of learning memory possibly cognition vitro . Coining the term “organoid intelligence” (OI) encompass these developments, we present a collaborative program implement vision multidisciplinary field OI. This aims establish OI as form genuine biological computing that harnesses using scientific bioengineering an ethically responsible manner. Standardized, 3D, myelinated can now be produced with high cell density enriched levels glial cells gene expression for learning. Integrated microfluidic perfusion systems support scalable durable culturing, spatiotemporal chemical signaling. Novel 3D microelectrode arrays permit high-resolution electrophysiological signaling recording explore capacity recapitulate mechanisms formation and, ultimately, their computational potential. Technologies could enable novel biocomputing models via stimulus-response training organoid-computer interfaces are development. We envisage complex, networked whereby connected real-world sensors output devices, ultimately each other sensory organ (e.g. retinal organoids), trained biofeedback, big-data warehousing, machine methods. In parallel, emphasize embedded ethics approach analyze ethical raised by research iterative, manner involving all relevant stakeholders. The many possible applications this urge strategic development discipline. anticipate OI-based allow faster decision-making, continuous during tasks, greater energy data efficiency. Furthermore, “intelligence-in-a-dish” help elucidate pathophysiology devastating developmental degenerative diseases (such dementia), potentially aiding identification therapeutic approaches address major global unmet needs.

Язык: Английский

Процитировано

158