
Mayo Clinic Proceedings Digital Health, Год журнала: 2025, Номер unknown, С. 100230 - 100230
Опубликована: Май 1, 2025
Язык: Английский
Mayo Clinic Proceedings Digital Health, Год журнала: 2025, Номер unknown, С. 100230 - 100230
Опубликована: Май 1, 2025
Язык: Английский
Seminars in Nuclear Medicine, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
3International Journal of Data Science and Analytics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
2Information Fusion, Год журнала: 2025, Номер unknown, С. 103033 - 103033
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Information Fusion, Год журнала: 2025, Номер unknown, С. 103024 - 103024
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Journal of Clinical Medicine, Год журнала: 2025, Номер 14(2), С. 572 - 572
Опубликована: Янв. 17, 2025
Background: Several artificial intelligence systems based on large language models (LLMs) have been commercially developed, with recent interest in integrating them for clinical questions. Recent versions now include image analysis capacity, but their performance gastroenterology remains untested. This study assesses ChatGPT-4's interpreting images. Methods: A total of 740 images from five procedures-capsule endoscopy (CE), device-assisted enteroscopy (DAE), endoscopic ultrasound (EUS), digital single-operator cholangioscopy (DSOC), and high-resolution anoscopy (HRA)-were included analyzed by ChatGPT-4 using a predefined prompt each. predictions were compared to gold standard diagnoses. Statistical analyses accuracy, sensitivity, specificity, positive predictive value (PPV), negative (NPV), area under the curve (AUC). Results: For CE, demonstrated accuracies ranging 50.0% 90.0%, AUCs 0.50-0.90. DAE, model an accuracy 67.0% (AUC 0.670). EUS, system showed 0.488 0.550 differentiation between pancreatic cystic solid lesions, respectively. The LLM differentiated benign malignant biliary strictures AUC 0.550. HRA, overall 47.5% 67.5%. Conclusions: suboptimal diagnostic interpretation across several techniques, highlighting need continuous improvement before adoption.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0World Neurosurgery, Год журнала: 2025, Номер 196, С. 123808 - 123808
Опубликована: Март 13, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0FEBS Open Bio, Год журнала: 2025, Номер unknown
Опубликована: Фев. 24, 2025
Medical digital twins (MDTs) are virtual representations of patients that simulate the biological, physiological, and clinical processes individuals to enable personalized medicine. With increasing complexity omics data, particularly multiomics, there is a growing need for advanced computational frameworks interpret these data effectively. Foundation models (FMs), large‐scale machine learning pretrained on diverse types, have recently emerged as powerful tools improving interpretability decision‐making in precision This review discusses integration FMs into MDT systems, their role enhancing multiomics data. We examine current challenges, recent advancements, future opportunities leveraging analysis MDTs, with focus application
Язык: Английский
Процитировано
0International Journal of Medical Informatics, Год журнала: 2025, Номер unknown, С. 105871 - 105871
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0