Опубликована: Дек. 12, 2024
Язык: Английский
Опубликована: Дек. 12, 2024
Язык: Английский
Springer series in advanced manufacturing, Год журнала: 2024, Номер unknown, С. 389 - 434
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
2Springer series in advanced manufacturing, Год журнала: 2024, Номер unknown, С. 277 - 292
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
2Springer series in advanced manufacturing, Год журнала: 2024, Номер unknown, С. 103 - 137
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Frontiers in Mechanical Engineering, Год журнала: 2024, Номер 10
Опубликована: Окт. 7, 2024
Maintenance is crucial for ensuring equipment reliability and minimizing downtime while managing associated costs. This study investigates a data-driven approach to predicting machine faults using Response Surface Methodology (RSM) Adaptive Neuro-Fuzzy Inference System (ANFIS). RSM was employed develop mathematical model analyze how operational parameters such as pressure, voltage, current, vibration, temperature affect fault occurrence. Data were collected at three levels each parameter central composite design. The identified that peaked pressure of 28.38 N/m 2 , an operating voltage 431.77 V, current consumption 12.54 A, vibration 47.17 Hz, 25°C, with maximum 25 observed. Conversely, the lowest detection occurred 29.42 441.04 12.04 49.46 46.5°C. A strong correlation found between these faults, achieving high accuracy (R = 98.22%) statistical significance ( p -value <0.05), demonstrating its in faults. also compared ANFIS process optimization beverage industry. While effectively optimized relationships, ANFIS, adaptive learning capabilities, provided superior prediction accuracy. comparative analysis highlighted strengths both methods suggested integrating them could enhance predictive maintenance strategies. findings offer valuable insights industry practitioners, recommending combined improve detection, optimize production processes, efficiency.
Язык: Английский
Процитировано
1Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
0