A Tutorial and Use Case Example of the eXtreme Gradient Boosting (XGBoost) Artificial Intelligence Algorithm for Drug Development Applications DOI Creative Commons
Matthew Wiens,

Alissa Verone‐Boyle,

Nick Henscheid

и другие.

Clinical and Translational Science, Год журнала: 2025, Номер 18(3)

Опубликована: Март 1, 2025

ABSTRACT Approaches to artificial intelligence and machine learning (AI/ML) continue advance in the field of drug development. A sound understanding underlying concepts guiding principles AI/ML implementation is a prerequisite identifying which approach most appropriate based on context. This tutorial focuses popular eXtreme gradient boosting (XGBoost) algorithm for classification regression simple clinical trial‐like datasets. Emphasis placed relating code implementation. In doing so, aim reader gain knowledge about become better versed with how implement functions relevant development questions. turn, this will provide practical ML experience can be applied algorithms problems beyond scope tutorial.

Язык: Английский

A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer DOI

Seyed Masoud HaghighiKian,

Ahmad Shirinzadeh-Dastgiri,

Mohammad Vakili-Ojarood

и другие.

Indian Journal of Surgical Oncology, Год журнала: 2024, Номер 16(1), С. 257 - 278

Опубликована: Сен. 5, 2024

Язык: Английский

Процитировано

6

The utilization of artificial intelligence in enhancing 3D/4D ultrasound analysis of fetal facial profiles DOI Creative Commons
Muhammad Adrianes Bachnas, Wiku Andonotopo, Julian Dewantiningrum

и другие.

Journal of Perinatal Medicine, Год журнала: 2024, Номер 52(9), С. 899 - 913

Опубликована: Окт. 9, 2024

Abstract Artificial intelligence (AI) has emerged as a transformative technology in the field of healthcare, offering significant advancements various medical disciplines, including obstetrics. The integration artificial into 3D/4D ultrasound analysis fetal facial profiles presents numerous benefits. By leveraging machine learning and deep algorithms, AI can assist accurate efficient interpretation complex data, enabling healthcare providers to make more informed decisions deliver better prenatal care. One such innovation that significantly improved is imaging. In conclusion, data for offers benefits, accuracy, consistency, efficiency diagnosis

Язык: Английский

Процитировано

6

Minimal residual disease as a target for liquid biopsy in patients with solid tumours DOI
Klaus Pantel, Catherine Alix‐Panabières

Nature Reviews Clinical Oncology, Год журнала: 2024, Номер 22(1), С. 65 - 77

Опубликована: Ноя. 28, 2024

Язык: Английский

Процитировано

6

Neuroimage analysis using artificial intelligence approaches: a systematic review DOI
Eric Jacob Bacon, Dianning He,

N'bognon Angèle D'avilla Achi

и другие.

Medical & Biological Engineering & Computing, Год журнала: 2024, Номер 62(9), С. 2599 - 2627

Опубликована: Апрель 26, 2024

Язык: Английский

Процитировано

5

A retrospective evaluation of the potential of ChatGPT in the accurate diagnosis of acute stroke DOI Creative Commons
Beyza Nur Kuzan, İsmail Meşe, Servan Yaşar

и другие.

Diagnostic and Interventional Radiology, Год журнала: 2024, Номер unknown

Опубликована: Сен. 2, 2024

Stroke is a neurological emergency requiring rapid, accurate diagnosis to prevent severe consequences. Early crucial for reducing morbidity and mortality. Artificial intelligence (AI) support tools, such as Chat Generative Pre-trained Transformer (ChatGPT), offer rapid diagnostic advantages. This study assesses ChatGPT's accuracy in interpreting diffusion-weighted imaging (DWI) acute stroke diagnosis.

Язык: Английский

Процитировано

5

Artificial Intelligence Detection of Cervical Spine Fractures Using Convolutional Neural Network Models DOI Creative Commons
Wongthawat Liawrungrueang, Inbo Han, Watcharaporn Cholamjiak

и другие.

Neurospine, Год журнала: 2024, Номер 21(3), С. 833 - 841

Опубликована: Сен. 27, 2024

To develop and evaluate a technique using convolutional neural networks (CNNs) for the computer-assisted diagnosis of cervical spine fractures from radiographic x-ray images. By leveraging deep learning techniques, study might potentially lead to improved patient outcomes clinical decision-making.

Язык: Английский

Процитировано

5

Evaluation of Convolutional Neural Networks (CNNs) in Identifying Retinal Conditions Through Classification of Optical Coherence Tomography (OCT) Images DOI Open Access

Rohin R. Teegavarapu,

Harshal A. Sanghvi,

Triya Belani

и другие.

Cureus, Год журнала: 2025, Номер unknown

Опубликована: Янв. 7, 2025

Introduction Diabetic retinopathy (DR) is a leading cause of blindness globally, emphasizing the urgent need for efficient diagnostic tools. Machine learning, particularly convolutional neural networks (CNNs), has shown promise in automating diagnosis retinal conditions with high accuracy. This study evaluates two CNN models, VGG16 and InceptionV3, classifying optical coherence tomography (OCT) images into four categories: normal, choroidal neovascularization, diabetic macular edema (DME), drusen. Methods Using 83,000 OCT across categories, CNNs were trained tested via Python-based libraries, including TensorFlow Keras. Metrics such as accuracy, sensitivity, specificity analyzed confusion matrices performance graphs. Comparisons dataset sizes evaluated impact on model accuracy tools deployed JupyterLab. Results InceptionV3 achieved between 85% 95%, peaking at 94% outperforming (92%). Larger datasets improved sensitivity by 7% all highest normal drusen classifications. like positively correlated size. Conclusions The confirms CNNs' potential diagnostics, achieving classification Limitations included reliance grayscale computational intensity, which hindered finer distinctions. Future work should integrate data augmentation, patient-specific variables, lightweight architectures to optimize clinical use, reducing costs improving outcomes.

Язык: Английский

Процитировано

0

Application of artificial intelligence technologies in cardiovascular disease detection and management authors DOI Open Access
Г. Г. Кутелев, S. A. Parfenov, K. V. Sapozhnikov

и другие.

Translational Medicine, Год журнала: 2025, Номер 11(6), С. 562 - 576

Опубликована: Янв. 26, 2025

Cardiovascular diseases (CVD) remain the leading cause of death worldwide, including in Russian Federation. Early detection and continuous monitoring are crucial to reduce mortality improve patient outcomes. This article examines use artificial intelligence technologies treatment cardiovascular diseases, emphasizing their potential for development field cardiology. A comprehensive literature search was conducted using, focusing on studies which used diagnose, treat, monitor diseases. The review includes an analysis various methods, machine learning neural networks, effectiveness detecting heart rhythm disorders using wireless sensors wearable devices. highlights promising solutions developed both internationally Federation, provides practical recommendations implementation. By addressing existing research gaps offering directions future, aims understanding application cardiology, ultimately contributes improved care

Язык: Английский

Процитировано

0

Artificial Intelligence in Fetal Growth Restriction Management: A Narrative Review DOI Creative Commons
Ugo Maria Pierucci, Gabriele Tonni, Glória Pelizzo

и другие.

Journal of Clinical Ultrasound, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT This narrative review examines the integration of Artificial Intelligence (AI) in prenatal care, particularly managing pregnancies complicated by Fetal Growth Restriction (FGR). AI provides a transformative approach to diagnosing and monitoring FGR leveraging advanced machine‐learning algorithms extensive data analysis. Automated fetal biometry using has demonstrated significant precision identifying structures, while predictive models analyzing Doppler indices maternal characteristics improve reliability adverse outcome predictions. enabled early detection stratification risk, facilitating targeted strategies individualized delivery plans, potentially improving neonatal outcomes. For instance, studies have shown enhancements detecting placental insufficiency‐related abnormalities when tools are integrated with traditional ultrasound techniques. also explores challenges such as algorithm bias, ethical considerations, standardization, underscoring importance global accessibility regulatory frameworks ensure equitable implementation. The potential revolutionize care highlights urgent need for further clinical validation interdisciplinary collaboration.

Язык: Английский

Процитировано

0

Identification of Cardiovascular Disease Populations in Chinese Communities Based on Machine Learning DOI

炎 谈

Advances in Clinical Medicine, Год журнала: 2025, Номер 15(01), С. 2059 - 2069

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0