Опубликована: Окт. 20, 2024
Язык: Английский
Опубликована: Окт. 20, 2024
Язык: Английский
The Journal of Supercomputing, Год журнала: 2024, Номер 80(15), С. 22913 - 23017
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
34Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 30, 2024
The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. aims minimize both mass compliance simultaneously. MOCS2arc an advanced version of the traditional (MOCS) algorithm, enhanced through dual archive strategy that significantly improves solution diversity performance. To evaluate effectiveness MOCS2arc, we conducted extensive comparisons with several established algorithms: MOSCA, MODA, MOWHO, MOMFO, MOMPA, NSGA-II, DEMO, MOCS. Such comparison has been made various performance metrics compare benchmark efficacy proposed algorithm. These comprehensively assess algorithms' abilities generate diverse optimal solutions. statistical results demonstrate superior evidenced by Additionally, Friedman's & Wilcoxon's corroborate finding consistently delivers compared others. show highly effective improved algorithm for structure optimization, offering significant promising improvements over existing methods.
Язык: Английский
Процитировано
11Biomimetics, Год журнала: 2024, Номер 9(2), С. 91 - 91
Опубликована: Фев. 1, 2024
The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on different mechanisms of pine tree reproduction, including pollination cone dispersal by gravity animals. It employs new powerful operators to simulate mentioned mechanisms. performance analyzed using classic benchmark functions, CEC017 CEC2019 as mathematical problems CEC2006 CEC2011 design In terms accuracy, results show superiority well-known algorithms (PSO, DE, WOA) (AVOA, RW_GWO, HHO, GBO). are competitive with state-of-the-art (LSHADE EBOwithCMAR). convergence speed time complexity, reasonable. According Friedman test, PCOA’s rank 1.68 9.42 percent better than EBOwithCMAR (second-best algorithm) LSHADE (third-best algorithm), respectively. authors recommend science, engineering, industrial societies complex optimization
Язык: Английский
Процитировано
7Alexandria Engineering Journal, Год журнала: 2024, Номер 110, С. 77 - 98
Опубликована: Окт. 7, 2024
Язык: Английский
Процитировано
7Cognitive Computation, Год журнала: 2020, Номер 12(5), С. 897 - 939
Опубликована: Июль 5, 2020
Язык: Английский
Процитировано
41Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
0International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 17, 2025
Язык: Английский
Процитировано
0Cognitive Computation, Год журнала: 2025, Номер 17(1)
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0Structures, Год журнала: 2025, Номер 74, С. 108519 - 108519
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
0Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0