Faculty acceptance and use of generative artificial intelligence in their practice DOI Creative Commons
Julián Nevárez Montes, Josemaría Elizondo-García

Frontiers in Education, Год журнала: 2025, Номер 10

Опубликована: Фев. 3, 2025

The effective integration of Generative Artificial Intelligence (GenAI) into educational practices holds promise for enhancing teaching and learning processes. Examining faculty acceptance use GenAI implementation can provide valuable insights the conditions necessary its successful application. This study consisted a survey to measure in practice 208 members at private university Mexico. instrument used integrates elements Technology Acceptance Model (TAM) Theory Reasoned Action (TRA). original questionnaire was translated Spanish validated by experts ensure reliability validity new context. Overall, dimensions obtained middle-high results. Behavioral intention highest values whereas Subjective norm lowest values. Significant differences regarding disciplines sociodemographics were not identified. Also, is positively moderate correlated with produce text. identified level among toward environments leads expect promising future practices. In addition, further research on student impact training settings are encouraged.

Язык: Английский

A systematic literature review on the application of generative artificial intelligence (GAI) in teaching within higher education: Instructional contexts, process, and strategies DOI
Peijun Wang, Yuhui Jing, Shusheng Shen

и другие.

The Internet and Higher Education, Год журнала: 2025, Номер unknown, С. 100996 - 100996

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Redesigning Assessments for AI-Enhanced Learning: A Framework for Educators in the Generative AI Era DOI Creative Commons
Zuheir N. Khlaif,

Wejdan Awadallah Alkouk,

Nisreen Salama

и другие.

Education Sciences, Год журнала: 2025, Номер 15(2), С. 174 - 174

Опубликована: Фев. 2, 2025

The emergence of generative artificial intelligence (Gen AI) in education offers both opportunities and challenges, particularly the context student assessment. This study examines faculty members’ motivations to redesign assessments for their courses Gen AI era introduces a framework this purpose. A qualitative methodology was employed, gathering data through semi-structured interviews focus groups, along with examples redesigned assessments. Sixty-one members participated study, were analyzed using deductive inductive thematic approaches. Key redesigning included maintaining academic integrity, preparing learners future careers, adapting technological advancements, aligning institutional policies. However, also highlighted significant such as need professional development addressing equity accessibility concerns. findings identified various innovative assessment approaches tailored requirements era. Based on these insights, developed conceptual titled “Against, Avoid, Adopt, Explore”. Future research is needed validate further refine its application educational contexts.

Язык: Английский

Процитировано

1

Revolutionising Digital Marketing Education with Generative Artificial Intelligence Integration: An Asynchronous Approach † DOI Creative Commons
John Bustard,

Mihaela Ghisoiu

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Assessing AI Detectors in Identifying AI-Generated Code: Implications for Education DOI Creative Commons
Wei Hung Pan, Ming Jie Chok, Jonathan Leong Shan Wong

и другие.

Опубликована: Апрель 14, 2024

Educators are increasingly concerned about the usage of Large Language Models (LLMs) such as ChatGPT in programming education, particularly regarding potential exploitation imperfections Artificial Intelligence Generated Content (AIGC) Detectors for academic misconduct.

Язык: Английский

Процитировано

7

Generative AI in student English learning in Thai higher education: More engagement, better outcomes? DOI Creative Commons
Budi Waluyo, Sekartiyasa Kusumastuti

Social Sciences & Humanities Open, Год журнала: 2024, Номер 10, С. 101146 - 101146

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

7

Widen the debate: What is the academic community’s perception on ChatGPT? DOI Creative Commons
Ying-Ying Jiang, Lindai Xie, Guohui Lin

и другие.

Education and Information Technologies, Год журнала: 2024, Номер 29(15), С. 20181 - 20200

Опубликована: Апрель 13, 2024

Abstract ChatGPT has surprised academia with its remarkable abilities but also raised substantial concerns regarding academic integrity and misconduct. Despite the debate, empirical research exploring issue is limited. The purpose of this study to bridge gap by analyzing Twitter data understand how perceiving ChatGPT. A total 9733 tweets were collected through Python via API in three consecutive weeks May June 2023; 3000 most relevant ones analyzed Atlas ti. 23. Our findings reveal a generally supportive attitude towards using academia, absence clear policies regulations requires attention. Discussions primarily focus on integrity, learning effectiveness, teaching efficiency. Tweets from influencers over one million followers separately. significance these limitations are included.

Язык: Английский

Процитировано

6

Generative AI in Education: Technical Foundations, Applications, and Challenges DOI Creative Commons
Sheikh Faisal Rashid, Nghia Duong‐Trung,

Niels Pinkwart

и другие.

Artificial intelligence, Год журнала: 2024, Номер unknown

Опубликована: Май 20, 2024

Generative artificial intelligence (AI) (GenAI) has emerged as a transformative force in various fields, and its potential impact on education is particularly profound. This chapter presents the development trends of “GenAI Education” by exploring technical background, diverse applications, multifaceted challenges associated with adoption education. The briefly introduces background GenAI, large language models (LLMs) such ChatGPT & Co. It provides key concepts, models, recent technological advances. then navigates through applications GenAI or LLMs education, examining their different levels including school, university, vocational training. will highlight how reshaping educational landscape real-world examples case studies, from personalized learning experiences to content creation assessment. also discusses technical, ethical, organizational/educational using technology

Язык: Английский

Процитировано

6

Against Artificial Education: Towards an Ethical Framework for Generative Artificial Intelligence (AI) Use in Education DOI Creative Commons
Andrew Swindell,

Luke Greeley,

Antony Farag

и другие.

Online Learning, Год журнала: 2024, Номер 28(2)

Опубликована: Июнь 1, 2024

The arrival of Generative Artificial Intelligence (AI) is fundamentally different from prior technologies used in educational settings. Educators and researchers online, blended, in-person learning are still coming to grips with possible applications AI the experience existing technologies; let alone understanding potential consequences that future developments will produce. Despite risks, may revolutionize previous models teaching perhaps create opportunities realize progressive goals. Given longstanding tradition philosophy examine questions surrounding ethics, ontology, technology, education, purpose this critical reflection paper draw prominent philosophers across these disciplines address question: how can be employed contexts a humanizing ethical manner? Drawing work Gunther Anders, Michel Foucault, Paolo Freire, Benjamin Bloom, Hannah Arendt, we propose framework for assessing use ethics modern education regarding human versus generated textual multimodal content, broader political, social, cultural implications. We conclude applied examples implications research practice.

Язык: Английский

Процитировано

6

Öğrencilerin Yapay Zeka Okuryazarlığı Üzerine Bir İnceleme DOI
Mithat Elçiçek

Bilgi ve İletişim Teknolojileri Dergisi, Год журнала: 2024, Номер 6(1), С. 24 - 35

Опубликована: Июнь 29, 2024

Bu araştırmada, lise, ön lisans ve öğrencilerinin yapay zeka okuryazarlık düzeyleriyle ilgili mevcut durumun incelenmesi düzeyi ile bazı demografik değişkenler (cinsiyet, öğrenim durumu günlük ortalama bilgisayar/internet kullanma süresi) arasındaki ilişkinin ortaya çıkarılması amaçlanmıştır. Araştırmada nicel araştırma yaklaşımına dayalı genel tarama modellerden ilişkisel modeli kullanılmıştır. Araştırmanın örneklemini Türkiye’nin doğusunda bulunan bir il merkezinde gören 870 öğrenci oluşturmaktadır. Veri toplama aracı olarak Laupichler diğerleri (2023) tarafından geliştirilen, Karaoğlan Yılmaz Türkçe uyarlaması yapılan "Yapay Zekâ Okuryazarlığı Ölçeği" Araştırma bulgularına göre, öğrencilerin düşük düzeyde çıkmıştır. elde edilen diğer sonuç ise düzeyinin cinsiyet süresine göre farklılaştığı şeklindedir. Elde sonuçlar okuryazarlığı konusundaki eğitim çalışmalarının yetersiz kaldığı iyileştirmelere gereksinim duyulduğunu koymaktadır. kapsamda konusunun öğretimi kullanılan yöntemlerin etkisi üzerine çalışmalar yürütülebilir.

Процитировано

6

Engaging students in higher education with educational technology DOI Creative Commons
Mikkel Godsk, Karen Louise Møller

Education and Information Technologies, Год журнала: 2024, Номер unknown

Опубликована: Авг. 6, 2024

Abstract There is a widespread agenda of improving teaching and learning in higher education by engaging students with educational technology. Based on large-scale literature review, the article presents 61 specific, research-based recommendations for realising engagement potential eight types technologies education. These can be used, example, educators to incorporate available into their or as an development method enhance particular forms student engagement. evidence, points out that some have more documented sometimes also broader engage behaviourally, affectively, and/or cognitively than others this likely related extent technology supports structure, active learning, communication, interaction, activities levels taxonomies.

Язык: Английский

Процитировано

6