
Systems and Soft Computing, Год журнала: 2025, Номер unknown, С. 200217 - 200217
Опубликована: Март 1, 2025
Язык: Английский
Systems and Soft Computing, Год журнала: 2025, Номер unknown, С. 200217 - 200217
Опубликована: Март 1, 2025
Язык: Английский
Sustainability, Год журнала: 2025, Номер 17(3), С. 1121 - 1121
Опубликована: Янв. 30, 2025
The long-term development of the manufacturing industry relies on sustainable tax management, which plays a key role in optimizing production costs. While artificial intelligence models have been applied to tax-related predictions, research their application for predicting management levels is quite limited, with no studies focused China. To enhance digital innovation corporate this study applies interpretable predict level, helps decision-makers maintain it within range. ratio total expense profits (ETR) used represent predicted using decision trees, random forests, linear regression, support vector and neural networks eight input features. Comparisons among developed indicate that forest model exhibits best performance terms prediction accuracy generalization capability. Additionally, Shapley additive explanations (SHAP) technique integrated interpretability its predictions. SHAP results reveal importance features also highlight dominance certain show ETR from previous year holds greatest importance, being more than twice as significant second most important factor, whereas effect board size negligible. Moreover, benefiting local interpretations values, approach aids managers making rational decisions.
Язык: Английский
Процитировано
0Systems and Soft Computing, Год журнала: 2025, Номер unknown, С. 200217 - 200217
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0