The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Окт. 1, 2024
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Окт. 1, 2024
Язык: Английский
Sensors, Год журнала: 2023, Номер 23(10), С. 4969 - 4969
Опубликована: Май 22, 2023
Surface roughness is a key indicator of the quality mechanical products, which can precisely portray fatigue strength, wear resistance, surface hardness and other properties products. The convergence current machine-learning-based prediction methods to local minima may lead poor model generalization or results that violate existing physical laws. Therefore, this paper combined knowledge with deep learning propose physics-informed method (PIDL) for milling predictions under constraints This introduced in input phase training learning. Data augmentation was performed on limited experimental data by constructing mechanism models tolerable accuracy prior training. In training, physically guided loss function constructed guide process knowledge. Considering excellent feature extraction capability convolutional neural networks (CNNs) gated recurrent units (GRUs) spatial temporal scales, CNN-GRU adopted as main predictions. Meanwhile, bi-directional unit multi-headed self-attentive were enhance correlation. paper, experiments conducted open-source datasets S45C GAMHE 5.0. comparison state-of-the-art methods, proposed has highest both datasets, mean absolute percentage error test set reduced 3.029% average compared best method. Physical-model-guided machine be future pathway evolution.
Язык: Английский
Процитировано
14Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(7), С. 3481 - 3481
Опубликована: Март 22, 2025
Axial force and deformation during drilling significantly impact the hole quality of thin-walled high-strength steel components. This study analyzed process AF1410 steel, focusing on axial force, deformation, drill cap formation, exit edge characteristics. The effects cutting speed (12.6–37.7 m/min) feed rate (0.01–0.1 mm/r) were also examined. Initially, plate undergoes elastic, outward bulging deformation. driven by elastic resistance, rises from 114.9 N to 322.1 as increases 0.025 mm/r 0.1 mm/r, with minimal influence speed. As progresses, slowly. Near exit, plastic occurs beneath bit, causing material yield form a cap. results in sharp rise maximum values increasing 314.2 525.3 at higher speeds 840.1 rates. formation characteristics directly affect defects, larger thickness width leading more pronounced burrs.
Язык: Английский
Процитировано
0Journal of Iron and Steel Research International, Год журнала: 2024, Номер 31(9), С. 2255 - 2270
Опубликована: Фев. 4, 2024
Язык: Английский
Процитировано
2International Journal on Interactive Design and Manufacturing (IJIDeM), Год журнала: 2023, Номер 18(7), С. 5043 - 5056
Опубликована: Авг. 28, 2023
Язык: Английский
Процитировано
3Journal of Vibration Engineering & Technologies, Год журнала: 2023, Номер 12(4), С. 5905 - 5934
Опубликована: Дек. 18, 2023
Язык: Английский
Процитировано
3Measurement, Год журнала: 2024, Номер unknown, С. 115770 - 115770
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер unknown
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
0