
Brain Research, Год журнала: 2024, Номер unknown, С. 149423 - 149423
Опубликована: Дек. 1, 2024
Язык: Английский
Brain Research, Год журнала: 2024, Номер unknown, С. 149423 - 149423
Опубликована: Дек. 1, 2024
Язык: Английский
PLoS ONE, Год журнала: 2025, Номер 20(4), С. e0314447 - e0314447
Опубликована: Апрель 17, 2025
The functional near-infrared spectroscopy-based brain-computer interface (fNIRS-BCI) systems recognize patterns in brain signals and generate control commands, thereby enabling individuals with motor disabilities to regain autonomy. In this study hand gripping data is acquired using fNIRS neuroimaging system, preprocessing performed nirsLAB features extraction deep learning (DL) Algorithms. For feature classification stack fft methods are proposed. Convolutional neural networks (CNN), long short-term memory (LSTM), bidirectional long-short-term (Bi-LSTM) employed extract features. method classifies these a model the enhances by applying fast Fourier transformation which followed model. proposed applied from twenty participants engaged two-class hand-gripping activity. performance of compared conventional CNN, LSTM, Bi-LSTM algorithms one another. yield 90.11% 87.00% accuracies respectively, significantly higher than those achieved CNN (85.16%), LSTM (79.46%), (81.88%) algorithms. results show that can be effectively used for two three-class problems fNIRS-BCI applications.
Язык: Английский
Процитировано
0Brain Research, Год журнала: 2024, Номер unknown, С. 149423 - 149423
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1