Natural Hazards, Год журнала: 2022, Номер 113(1), С. 641 - 671
Опубликована: Март 29, 2022
Язык: Английский
Natural Hazards, Год журнала: 2022, Номер 113(1), С. 641 - 671
Опубликована: Март 29, 2022
Язык: Английский
Advances in Space Research, Год журнала: 2023, Номер 72(2), С. 426 - 443
Опубликована: Март 21, 2023
Язык: Английский
Процитировано
49Advances in Space Research, Год журнала: 2021, Номер 68(7), С. 2819 - 2840
Опубликована: Май 26, 2021
Язык: Английский
Процитировано
81Agricultural Systems, Год журнала: 2021, Номер 196, С. 103343 - 103343
Опубликована: Дек. 8, 2021
Язык: Английский
Процитировано
60Remote Sensing Applications Society and Environment, Год журнала: 2024, Номер 33, С. 101140 - 101140
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
7Computers, materials & continua/Computers, materials & continua (Print), Год журнала: 2024, Номер 78(2), С. 2245 - 2267
Опубликована: Янв. 1, 2024
Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic hazards.As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic Particle Swarm Optimization (PSO) to address the risks associated with botnets.Fuzzy addresses threat uncertainties ambiguities methodically.Fuzzy component settings are optimized using PSO improve accuracy.The methodology allows for complex thinking by transitioning from binary continuous assessment.Instead expert inputs, data-driven tunes rules membership functions.This study presents complete system.The helps security teams allocate resources categorizing threats as high, medium, or low severity.This shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection, it provides proactive approach management promotes development secure environments.
Язык: Английский
Процитировано
6Journal of Spatial Science, Год журнала: 2024, Номер 69(3), С. 963 - 993
Опубликована: Апрель 15, 2024
Landslides in the state of Mizoram result damage to life and properties annually. The study focuses on landslide susceptibility zones by frequency ratio (FR), evidential belief function (EBF) index entropy (IOE) models. A total 1,486 points were used build a relationship between 16 factors occurrences. results reveal 14.44%, 19.64% 3.55% area as very high susceptible FR, EBF IOE models, respectively. AUC support adoption model land use planning decision-making processes enhance natural resource management mitigate risks Mizoram.
Язык: Английский
Процитировано
6Environmental Science and Pollution Research, Год журнала: 2021, Номер 29(3), С. 3743 - 3762
Опубликована: Авг. 13, 2021
Язык: Английский
Процитировано
36Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 122, С. 106081 - 106081
Опубликована: Март 14, 2023
Язык: Английский
Процитировано
15Frontiers in Ecology and Evolution, Год журнала: 2023, Номер 11
Опубликована: Март 8, 2023
Introduction Natural hazards such as landslides and floods have caused significant damage to properties, natural resources, human lives. The increased anthropogenic activities in weak geological areas led a rise the frequency of landslides, making landslide management an urgent task minimize negative impact. This study aimed use hyper-tuned machine learning deep algorithms predict susceptibility model (LSM) provide sensitivity uncertainty analysis Aqabat Al-Sulbat Asir region Saudi Arabia. Methods Random forest (RF) was used model, while neural network (DNN) model. models were using grid search technique, best hypertuned for predicting LSM. generated validated receiver operating characteristics (ROC), F1 F2 scores, gini value, precision recall curve. DNN based conducted analyze influence parameters landslide. Results showed that RF predicted 35.1–41.32 15.14–16.2 km 2 high very zones, respectively. area under curve (AUC) ROC LSM by achieved 0.96 AUC, 0.93 AUC. results rainfall had highest landslide, followed Topographic Wetness Index (TWI), curvature, slope, soil texture, lineament density. Discussion Road density geology map prediction. may be helpful authorities stakeholders proposing plans considering potential sensitive parameters.
Язык: Английский
Процитировано
13Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(20), С. 29811 - 29835
Опубликована: Апрель 9, 2024
Язык: Английский
Процитировано
5