Modeling the total hardness (TH) of groundwater in aquifers using novel hybrid soft computing optimizer models DOI
Hossein Moayedi, Marjan Salari,

Sana Abdul-Jabbar Ali

и другие.

Environmental Earth Sciences, Год журнала: 2024, Номер 83(13)

Опубликована: Июнь 12, 2024

Язык: Английский

Revolutionizing Groundwater Management with Hybrid AI Models: A Practical Review DOI Open Access
Mojtaba Zaresefat, Reza Derakhshani

Water, Год журнала: 2023, Номер 15(9), С. 1750 - 1750

Опубликована: Май 2, 2023

Developing precise soft computing methods for groundwater management, which includes quality and quantity, is crucial improving water resources planning management. In the past 20 years, significant progress has been made in management using hybrid machine learning (ML) models as artificial intelligence (AI). Although various review articles have reported advances this field, existing literature must cover ML. This article aims to understand current state-of-the-art ML used achievements domain. It most cited employed from 2009 2022. summarises reviewed papers, highlighting their strengths weaknesses, performance criteria employed, highly identified. worth noting that accuracy was significantly enhanced, resulting a substantial improvement demonstrating robust outcome. Additionally, outlines recommendations future research directions enhance of including prediction related knowledge.

Язык: Английский

Процитировано

33

Novel evolutionary-optimized neural network for predicting landslide susceptibility DOI
Rana Muhammad Adnan Ikram, Imran Khan, Hossein Moayedi

и другие.

Environment Development and Sustainability, Год журнала: 2023, Номер 26(7), С. 17687 - 17719

Опубликована: Май 19, 2023

Язык: Английский

Процитировано

24

A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping DOI
Hossein Moayedi, Atefeh Ahmadi Dehrashid

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(34), С. 82964 - 82989

Опубликована: Июнь 19, 2023

Язык: Английский

Процитировано

24

A novel problem-solving method by multi-computational optimisation of artificial neural network for modelling and prediction of the flow erosion processes DOI Creative Commons
Hossein Moayedi, Atefeh Ahmadi Dehrashid,

Binh Nguyen Le

и другие.

Engineering Applications of Computational Fluid Mechanics, Год журнала: 2024, Номер 18(1)

Опубликована: Янв. 7, 2024

This research aims to forecast, using various criteria, the flow of soil erosion that will occur at a particular geographical location. As for training dataset, 80% dataset from sample sites, four hybrid algorithms, namely heap-based optimizer (HBO), political (PO), teaching-learning based optimization (TLBO), and backtracking search algorithm (BSA) combined with artificial neural network (ANN) was used create an susceptibility model establishes unique original approach. After it confirmed be successful, algorithms were applied map this area, demonstrating integrity results. The AUC values computed every optimisation in study. optimal estimated accuracy indices populations 450 determined 0.9846 BSA-MLP databases. maximum value HBO-MLP databases different swarm sizes 0.9736. A size 350–300 is considered forecasting mapping models. With same constraints, TLBO-MLP scenario 0.996. 150 conditions train PO-MLP model, 0.9845. According these findings, worked best 50 150, respectively.

Язык: Английский

Процитировано

10

A new procedure for optimizing neural network using stochastic algorithms in predicting and assessing landslide risk in East Azerbaijan DOI
Atefeh Ahmadi Dehrashid, Hailong Dong,

Marieh Fatahizadeh

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown

Опубликована: Март 21, 2024

Язык: Английский

Процитировано

7

Application of hybrid model-based machine learning for groundwater potential prediction in the north central of Vietnam DOI
Huu Duy Nguyen,

Van Hong Nguyen,

Quan Vu Viet Du

и другие.

Earth Science Informatics, Год журнала: 2024, Номер 17(2), С. 1569 - 1589

Опубликована: Янв. 12, 2024

Язык: Английский

Процитировано

6

Hybrid artificial intelligence models based on adaptive neuro fuzzy inference system and metaheuristic optimization algorithms for prediction of daily rainfall DOI
Binh Thai Pham, Kien-Trinh Thi Bui, Indra Prakash

и другие.

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2024, Номер 134, С. 103563 - 103563

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

6

Validation of four optimization evolutionary algorithms combined with artificial neural network (ANN) for landslide susceptibility mapping: A case study of Gilan, Iran DOI
Hossein Moayedi, Maochao Xu, Pooria Naderian

и другие.

Ecological Engineering, Год журнала: 2024, Номер 201, С. 107214 - 107214

Опубликована: Фев. 29, 2024

Язык: Английский

Процитировано

5

Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches DOI

Zongwang Wu,

Hossein Moayedi, Marjan Salari

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown

Опубликована: Апрель 29, 2024

Язык: Английский

Процитировано

5

Investigating Landfill Leachate and Groundwater Quality Prediction Using a Robust Integrated Artificial Intelligence Model: Grey Wolf Metaheuristic Optimization Algorithm and Extreme Learning Machine DOI Open Access
Meysam Alizamir, Zahra Kazemi,

Zohre Kazemi

и другие.

Water, Год журнала: 2023, Номер 15(13), С. 2453 - 2453

Опубликована: Июль 4, 2023

The likelihood of surface water and groundwater contamination is higher in regions close to landfills due the possibility leachate percolation, which a potential source pollution. Therefore, proposing reliable framework for monitoring parameters an essential task managers authorities quality control. For this purpose, efficient hybrid artificial intelligence model based on grey wolf metaheuristic optimization algorithm extreme learning machine (ELM-GWO) used predicting landfill (COD BOD5) (turbidity EC) at Saravan landfill, Rasht, Iran. In study, samples were collected from wells. Moreover, concentration different physico-chemical heavy metal (Cd, Cr, Cu, Fe, Ni, Pb, Mn, Zn, turbidity, Ca, Na, NO3, Cl, K, COD, EC, TDS, pH, K). results obtained ELM-GWO compared with four models: multivariate adaptive regression splines (MARS), (ELM), multilayer perceptron neural network (MLPANN), integrated (MLPANN-GWO). study confirm that considerably enhanced predictive performance MLPANN-GWO, ELM, MLPANN, MARS models terms root-mean-square error, respectively, by 43.07%, 73.88%, 74.5%, 88.55% COD; 23.91%, 59.31%, 62.85%, 77.71% BOD5; 14.08%, 47.86%, 53.43%, 57.04% turbidity; 38.57%, 59.64%, 67.94%, 74.76% EC. can be applied as robust approach investigating sites.

Язык: Английский

Процитировано

13