Improving Aggregate Abrasion Resistance Prediction via Micro-Deval Test Using Ensemble Machine Learning Techniques DOI Open Access
Alireza Roshan, Magdy Abdelrahman

Engineering Journal, Год журнала: 2024, Номер 28(3), С. 15 - 24

Опубликована: Март 1, 2024

Aggregate is the most extracted material from world's mines and widely used in civil construction projects.The Micro-Deval abrasion test (MD) one of important tests that provides characteristics crushed aggregates show their resistance against mechanical abrasive factors such as repeated impact loading.The various on properties has led researchers to seek correlations, often focusing limited data samples, leading reduced accuracy.This study employs machine learning (ML) methods predict MD values, considering diverse aggregate properties.Various ensemble ML were applied, revealing exceptional performance stacking model, which achieved an R 2 score 0.95 predicting resistance.The feature importance analysis highlights influence Magnesium Sulfate Soundness (MSS), Water Absorption (ABS), Los Angeles Abrasion (LAA) suggesting use multiple could yield a more dependable assessment durability.

Язык: Английский

Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP DOI
Kaushik Jas, G. R. Dodagoudar

Soil Dynamics and Earthquake Engineering, Год журнала: 2022, Номер 165, С. 107662 - 107662

Опубликована: Ноя. 30, 2022

Язык: Английский

Процитировано

92

Optimized hybrid ensemble learning approaches applied to very short-term load forecasting DOI Creative Commons
Marcos Yamasaki, Roberto Zanetti Freire, Laio Oriel Seman

и другие.

International Journal of Electrical Power & Energy Systems, Год журнала: 2023, Номер 155, С. 109579 - 109579

Опубликована: Окт. 26, 2023

The significance of accurate short-term load forecasting (STLF) for modern power systems' efficient and secure operation is paramount. This task intricate due to cyclicity, non-stationarity, seasonality, nonlinear consumption time series data characteristics. rise accessibility in the industry has paved way machine learning (ML) models, which show potential enhance STLF accuracy. paper presents a novel hybrid ML model combining Gradient Boosting Regressor (GBR), Extreme (XGBoost), k-Nearest Neighbors (kNN), Support Vector Regression (SVR), examining both standalone integrated, coupled with signal decomposition techniques like STL, EMD, EEMD, CEEMDAN, EWT. Through Automated Machine Learning (AutoML), these models are integrated their hyperparameters optimized, predicting each component using from two sources: National Operator Electric System (ONS) Independent Operators New England (ISO-NE), boosting prediction capacity. For 2019 ONS dataset, EWT XGBoost yielded best results very (VSTLF) an RMSE 1,931.8 MW, MAE 1,564.9 MAPE 2.54%. These findings highlight necessity diverse approaches VSTLF problem, emphasizing adaptability strength combined techniques.

Язык: Английский

Процитировано

91

Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost DOI
Selçuk Demir, Emrehan Kutluğ Şahin

Acta Geotechnica, Год журнала: 2023, Номер 18(6), С. 3403 - 3419

Опубликована: Янв. 2, 2023

Язык: Английский

Процитировано

73

Short-Term Rockburst Damage Assessment in Burst-Prone Mines: An Explainable XGBOOST Hybrid Model with SCSO Algorithm DOI

Yingui Qiu,

Jian Zhou

Rock Mechanics and Rock Engineering, Год журнала: 2023, Номер 56(12), С. 8745 - 8770

Опубликована: Сен. 2, 2023

Язык: Английский

Процитировано

60

Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development DOI

Chaitanya B. Pande,

Johnbosco C. Egbueri, Romulus Costache

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141035 - 141035

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

41

Exploring forest fire susceptibility and management strategies in Western Himalaya: Integrating ensemble machine learning and explainable AI for accurate prediction and comprehensive analysis DOI Creative Commons
Hoang Thi Hang, Javed Mallick, Saeed Alqadhi

и другие.

Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655

Опубликована: Май 5, 2024

Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.

Язык: Английский

Процитировано

24

Evaluation and analysis of liquefaction potential of gravelly soils using explainable probabilistic machine learning model DOI
Kaushik Jas, Sujith Mangalathu, G. R. Dodagoudar

и другие.

Computers and Geotechnics, Год журнала: 2024, Номер 167, С. 106051 - 106051

Опубликована: Янв. 8, 2024

Язык: Английский

Процитировано

21

Surface water quality prediction in the lower Thoubal river watershed, India: A hyper-tuned machine learning approach and DNN-based sensitivity analysis DOI
Md Hibjur Rahaman, Haroon Sajjad,

Shabina Hussain

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(3), С. 112915 - 112915

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

11

The Role of Utilizing Artificial Intelligence and Renewable Energy in Reaching Sustainable Development Goals DOI
Fatma M. Talaat, A.E. Kabeel,

Warda M. Shaban

и другие.

Renewable Energy, Год журнала: 2024, Номер 235, С. 121311 - 121311

Опубликована: Сен. 7, 2024

Язык: Английский

Процитировано

11

An Optimal House Price Prediction Algorithm: XGBoost DOI Creative Commons
Hemlata Sharma,

Hitesh Harsora,

Bayode Ogunleye

и другие.

Analytics, Год журнала: 2024, Номер 3(1), С. 30 - 45

Опубликована: Янв. 2, 2024

An accurate prediction of house prices is a fundamental requirement for various sectors including real estate and mortgage lending. It widely recognized that property value not solely determined by its physical attributes but significantly influenced surrounding neighbourhood. Meeting the diverse housing needs individuals while balancing budget constraints primary concern developers. To this end, we addressed price problem as regression task thus employed machine learning techniques capable expressing significance independent variables. We made use dataset Ames City in Iowa, USA to compare support vector regressor, random forest XGBoost, multilayer perceptron multiple linear algorithms prediction. Afterwards, identified key factors influence costs. Our results show XGBoost best performing model

Язык: Английский

Процитировано

10