Cluster Computing, Год журнала: 2024, Номер 27(10), С. 14231 - 14245
Опубликована: Июль 17, 2024
Язык: Английский
Cluster Computing, Год журнала: 2024, Номер 27(10), С. 14231 - 14245
Опубликована: Июль 17, 2024
Язык: Английский
Biomedical Signal Processing and Control, Год журнала: 2025, Номер 104, С. 107627 - 107627
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
20Neuroscience, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
18Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Фев. 6, 2025
Язык: Английский
Процитировано
9Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
3Computers in Biology and Medicine, Год журнала: 2025, Номер 188, С. 109790 - 109790
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
3Results in Engineering, Год журнала: 2024, Номер unknown, С. 103692 - 103692
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
16Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 29, 2025
Attention mechanisms such as the Convolutional Block Module (CBAM) can help emphasize and refine most relevant feature maps color, texture, spots, wrinkle variations for avocado ripeness classification. However, CBAM lacks global context awareness, which may prevent it from capturing long-range dependencies or patterns relationships between distant regions in image. Further, more complex neural networks improve model performance but at cost of increasing number layers train parameters, not be suitable resource constrained devices. This paper presents Hybrid Neural Network (HACNN) classifying on It aims to perform local enhancement capture relationships, leading a comprehensive extraction by combining attention modules models. The proposed HACNN combines transfer learning with hybrid mechanisms, including Spatial, Channel, Self-Attention Modules, effectively intricate features fourteen thousand images. Extensive experiments demonstrate that EfficienctNet-B3 significantly outperforms conventional models regarding accuracy 96.18%, 92.64%, 91.25% train, validation, test models, respectively. In addition, this consumed 59.81 MB memory an average inference time 280.67 ms TensorFlow Lite smartphone. Although ShuffleNetV1 (1.0x) consumes least resources, its testing is only 82.89%, insufficient practical applications. Thus, MobileNetV3 Large exciting option has 91.04%, usage 26.52 MB, 86.94 These findings indicated method enhances classification ensures feasibility implementation low-resource environments.
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 21, 2025
Oral cavity cancer exhibits high morbidity and mortality rates. Therefore, it is essential to diagnose the disease at an early stage. Machine learning convolution neural networks (CNN) are powerful tools for diagnosing mouth oral cancer. In this study, we design a lightweight explainable network (LWENet) with label-guided attention (LGA) provide second opinion expert. The LWENet contains depth-wise separable layers reduce computation costs. Moreover, LGA module provides label consistency neighbor pixel improves spatial features. Furthermore, AMSA (axial multi-head self-attention) based ViT encoder incorporated in model global attention. Our (vision transformer) computationally efficient compared classical encoder. We tested LWRNet performance on MOD (mouth disease) OCI (oral image) datasets, results other CNN methods. achieved precision F1-scores of 96.97% 98.90% dataset, 99.48% 98.23% respectively. By incorporating Grad-CAM, visualize decision-making process, enhancing interpretability. This work demonstrates potential facilitating detection.
Язык: Английский
Процитировано
1Expert Systems with Applications, Год журнала: 2025, Номер 274, С. 126896 - 126896
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
1Neural Computing and Applications, Год журнала: 2024, Номер unknown
Опубликована: Дек. 5, 2024
Язык: Английский
Процитировано
6