G-SAM: GMM-based segment anything model for medical image classification and segmentation DOI
Xiaoxiao Liu, Yan Zhao, Shigang Wang

et al.

Cluster Computing, Journal Year: 2024, Volume and Issue: 27(10), P. 14231 - 14245

Published: July 17, 2024

Language: Английский

A systematic review of deep learning in MRI-based cerebral vascular occlusion-based brain diseases DOI
Bilal Bayram, İsmail Kunduracıoğlu, Suat İnce

et al.

Neuroscience, Journal Year: 2025, Volume and Issue: unknown

Published: Jan. 1, 2025

Language: Английский

Citations

6

A novel CNN-ViT-based deep learning model for early skin cancer diagnosis DOI
İshak Paçal, B. Özdemir, Javanshir Zeynalov

et al.

Biomedical Signal Processing and Control, Journal Year: 2025, Volume and Issue: 104, P. 107627 - 107627

Published: Jan. 28, 2025

Language: Английский

Citations

3

Quantum computational infusion in extreme learning machines for early multi-cancer detection DOI Creative Commons
Anas Bilal, Muhammad Shafiq, Waeal J. Obidallah

et al.

Journal Of Big Data, Journal Year: 2025, Volume and Issue: 12(1)

Published: Feb. 6, 2025

Language: Английский

Citations

3

Detection of brain tumors using a transfer learning-based optimized ResNet152 model in MR images DOI
Prabhpreet Kaur, Priyanka Mahajan

Computers in Biology and Medicine, Journal Year: 2025, Volume and Issue: 188, P. 109790 - 109790

Published: Feb. 13, 2025

Language: Английский

Citations

2

Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices DOI Creative Commons
Sumitra Nuanmeesri

Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)

Published: Jan. 29, 2025

Attention mechanisms such as the Convolutional Block Module (CBAM) can help emphasize and refine most relevant feature maps color, texture, spots, wrinkle variations for avocado ripeness classification. However, CBAM lacks global context awareness, which may prevent it from capturing long-range dependencies or patterns relationships between distant regions in image. Further, more complex neural networks improve model performance but at cost of increasing number layers train parameters, not be suitable resource constrained devices. This paper presents Hybrid Neural Network (HACNN) classifying on It aims to perform local enhancement capture relationships, leading a comprehensive extraction by combining attention modules models. The proposed HACNN combines transfer learning with hybrid mechanisms, including Spatial, Channel, Self-Attention Modules, effectively intricate features fourteen thousand images. Extensive experiments demonstrate that EfficienctNet-B3 significantly outperforms conventional models regarding accuracy 96.18%, 92.64%, 91.25% train, validation, test models, respectively. In addition, this consumed 59.81 MB memory an average inference time 280.67 ms TensorFlow Lite smartphone. Although ShuffleNetV1 (1.0x) consumes least resources, its testing is only 82.89%, insufficient practical applications. Thus, MobileNetV3 Large exciting option has 91.04%, usage 26.52 MB, 86.94 These findings indicated method enhances classification ensures feasibility implementation low-resource environments.

Language: Английский

Citations

1

An Innovative Deep Learning Framework for Skin Cancer Detection Employing ConvNeXtV2 and Focal Self-Attention Mechanisms DOI Creative Commons
B. Özdemir, İshak Paçal

Results in Engineering, Journal Year: 2024, Volume and Issue: unknown, P. 103692 - 103692

Published: Dec. 1, 2024

Language: Английский

Citations

7

Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model DOI Creative Commons
Moneerah Alotaibi, Amal Alshardan, Mashael Maashi

et al.

Scientific Reports, Journal Year: 2024, Volume and Issue: 14(1)

Published: Sept. 3, 2024

Cancer seems to have a vast number of deaths due its heterogeneity, aggressiveness, and significant propensity for metastasis. The predominant categories cancer that may affect males females occur worldwide are colon lung cancer. A precise on-time analysis this can increase the survival rate improve appropriate treatment characteristics. An efficient effective method speedy accurate recognition tumours in areas is provided as an alternative methods. Earlier diagnosis disease on front drastically reduces chance death. Machine learning (ML) deep (DL) approaches accelerate diagnosis, facilitating researcher workers study majority patients limited period at low cost. This research presents Histopathological Imaging Early Detection Lung Colon via Ensemble DL (HIELCC-EDL) model. HIELCC-EDL technique utilizes histopathological images identify (LCC). To achieve this, uses Wiener filtering (WF) noise elimination. In addition, model channel attention Residual Network (CA-ResNet50) complex feature patterns. Moreover, hyperparameter selection CA-ResNet50 performed using tuna swarm optimization (TSO) technique. Finally, detection LCC achieved by ensemble three classifiers such extreme machine (ELM), competitive neural networks (CNNs), long short-term memory (LSTM). illustrate promising performance model, complete set experimentations was benchmark dataset. experimental validation portrayed superior accuracy value 99.60% over recent approaches.

Language: Английский

Citations

5

Comparison of deep transfer learning models for classification of cervical cancer from pap smear images DOI Creative Commons
Harmanpreet Kaur, Reecha Sharma,

Jagroop Kaur

et al.

Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)

Published: Jan. 31, 2025

Language: Английский

Citations

0

Advanced brain tumor segmentation using DeepLabV3Plus with Xception encoder on a multi-class MR image dataset DOI
Shoffan Saifullah, Rafał Dreżewski, Anton Yudhana

et al.

Multimedia Tools and Applications, Journal Year: 2025, Volume and Issue: unknown

Published: Feb. 21, 2025

Language: Английский

Citations

0

Explainable label guided lightweight network with axial transformer encoder for early detection of oral cancer DOI Creative Commons
Dhirendra Prasad Yadav, Bhisham Sharma, Ajit Noonia

et al.

Scientific Reports, Journal Year: 2025, Volume and Issue: 15(1)

Published: Feb. 21, 2025

Oral cavity cancer exhibits high morbidity and mortality rates. Therefore, it is essential to diagnose the disease at an early stage. Machine learning convolution neural networks (CNN) are powerful tools for diagnosing mouth oral cancer. In this study, we design a lightweight explainable network (LWENet) with label-guided attention (LGA) provide second opinion expert. The LWENet contains depth-wise separable layers reduce computation costs. Moreover, LGA module provides label consistency neighbor pixel improves spatial features. Furthermore, AMSA (axial multi-head self-attention) based ViT encoder incorporated in model global attention. Our (vision transformer) computationally efficient compared classical encoder. We tested LWRNet performance on MOD (mouth disease) OCI (oral image) datasets, results other CNN methods. achieved precision F1-scores of 96.97% 98.90% dataset, 99.48% 98.23% respectively. By incorporating Grad-CAM, visualize decision-making process, enhancing interpretability. This work demonstrates potential facilitating detection.

Language: Английский

Citations

0