Synergizing multiple machine learning techniques and remote sensing for advanced landslide susceptibility assessment: a case study in the Three Gorges Reservoir Area DOI
Yingxu Song, Yuan Li,

Yujia Zou

и другие.

Environmental Earth Sciences, Год журнала: 2024, Номер 83(8)

Опубликована: Апрель 1, 2024

Язык: Английский

Effect of the Normalized Difference Vegetation Index (NDVI) on GIS-Enabled Bivariate and Multivariate Statistical Models for Landslide Susceptibility Mapping DOI

K. C. Niraj,

Ankit Singh, Dericks Praise Shukla

и другие.

Journal of the Indian Society of Remote Sensing, Год журнала: 2023, Номер 51(8), С. 1739 - 1756

Опубликована: Июль 28, 2023

Язык: Английский

Процитировано

24

Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology DOI
Abhik Saha,

Lakshya Tripathi,

Vasanta Govind Kumar Villuri

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(7), С. 10443 - 10459

Опубликована: Янв. 10, 2024

Язык: Английский

Процитировано

13

Predicting landslide susceptibility based on decision tree machine learning models under climate and land use changes DOI
Quoc Bao Pham, Subodh Chandra Pal, Rabin Chakrabortty

и другие.

Geocarto International, Год журнала: 2021, Номер 37(25), С. 7881 - 7907

Опубликована: Сен. 27, 2021

Landslides are most catastrophic and frequently occurred across the world. In mountainous areas of globe, recurrent occurrences landslide have caused huge amount economic losses a large number casualties. this research, we attempted to estimate potential impact climate LULC on future susceptibility in Markazi Province Iran. We considered boosted tree (BT), random forest (RF) extremely randomized (ERT) models for assessment Province. The results evaluation criteria showed that ERT model is optimal than other used study with AUC values 0.99 0.93 training validation datasets, respectively. According model, spatial coverage very high land slide susceptible zones current period, 2050s considering RCP 2.6 8.5 428.5 km2, 439.6 km2 465.2 From analysis it clear changes prominent. present help managers reduce damages, not only but also conditions, based changes.

Язык: Английский

Процитировано

48

Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality DOI
Yacine Achour,

Zahra Saïdani,

Rania Touati

и другие.

Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)

Опубликована: Авг. 18, 2021

Язык: Английский

Процитировано

47

Development of geo-environmental factors controlled flash flood hazard map for emergency relief operation in complex hydro-geomorphic environment of tropical river, India DOI

Dipankar Ruidas,

Asish Saha, Abu Reza Md. Towfiqul Islam

и другие.

Environmental Science and Pollution Research, Год журнала: 2022, Номер 30(49), С. 106951 - 106966

Опубликована: Окт. 13, 2022

Язык: Английский

Процитировано

35

Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models DOI
Subodh Chandra Pal, Rabin Chakrabortty, Asish Saha

и другие.

Bulletin of Engineering Geology and the Environment, Год журнала: 2022, Номер 81(1)

Опубликована: Янв. 1, 2022

Язык: Английский

Процитировано

30

Potential impacts of future climate on the spatio-temporal variability of landslide susceptibility in Iran using machine learning algorithms and CMIP6 climate-change scenarios DOI
Saeid Janizadeh, Sayed M. Bateni, Changhyun Jun

и другие.

Gondwana Research, Год журнала: 2023, Номер 124, С. 1 - 17

Опубликована: Май 19, 2023

Язык: Английский

Процитировано

21

Development and assessment of a novel hybrid machine learning-based landslide susceptibility mapping model in the Darjeeling Himalayas DOI
Abhik Saha, Vasanta Govind Kumar Villuri, Ashutosh Bhardwaj

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2023, Номер unknown

Опубликована: Авг. 4, 2023

Язык: Английский

Процитировано

19

Application of novel framework approach for prediction of nitrate concentration susceptibility in coastal multi-aquifers, Bangladesh DOI
Abu Reza Md. Towfiqul Islam, Subodh Chandra Pal, Indrajit Chowdhuri

и другие.

The Science of The Total Environment, Год журнала: 2021, Номер 801, С. 149811 - 149811

Опубликована: Авг. 20, 2021

Язык: Английский

Процитировано

40

Random Forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine DOI
Komal Choudhary, Wenzhong Shi, Dong Yu

и другие.

Advances in Space Research, Год журнала: 2022, Номер 70(8), С. 2443 - 2457

Опубликована: Июль 8, 2022

Язык: Английский

Процитировано

28