Evaluation of Tree-Based Voting Algorithms in Water Quality Classification Prediction DOI Open Access
LI Li-li, Jeng Hua Wei

Sustainability, Год журнала: 2024, Номер 16(23), С. 10634 - 10634

Опубликована: Дек. 4, 2024

Accurately predicting the state of surface water quality is crucial for ensuring sustainable use resources and environmental protection. This often requires a focus on range factors affecting quality, such as physical chemical parameters. Tree models, with their flexible tree-like structure strong capability partitioning selecting influential features, offer clear decision-making rules, making them suitable this task. However, an individual decision tree model has limitations cannot fully capture complex relationships between all influencing parameters quality. Therefore, study proposes method combining ensemble models voting algorithms to predict classification. was conducted using five monitoring sites in Qingdao, representing portion many municipal environment stations China, employing single-factor determination stringent standards. The soft algorithm achieved highest accuracy 99.91%, addressed imbalance original categories, reaching Matthews Correlation Coefficient (MCC) 99.88%. In contrast, conventional machine learning algorithms, logistic regression K-nearest neighbors, lower accuracies 75.90% 91.33%, respectively. Additionally, model’s supervision misclassified data demonstrated its good rules. trained also transferred directly at 13 Beijing, where it performed robustly, achieving hard 97.73% MCC 96.81%. countries’ systems, different qualities correspond uses, magnitude related categories; critical can even determine category. are highly capable handling nonlinear important allowing identify exploit interactions parameters, which especially when multiple together there significant motivation develop model-based prediction models.

Язык: Английский

Comparative Assessment of Machine Learning Models for Groundwater Quality Prediction Using Various Parameters DOI
Majid Niazkar, Reza Piraei, Mohammad Reza Goodarzi

и другие.

Environmental Processes, Год журнала: 2025, Номер 12(1)

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

5

A comparative hydrochemical assessment of groundwater quality for drinking and irrigation purposes using different statistical and ML models in lower gangetic alluvial plain, eastern India DOI

Sribas Kanji,

Subhasish Das,

Chandi Rajak

и другие.

Chemosphere, Год журнала: 2025, Номер 372, С. 144074 - 144074

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

3

Leveraging machine learning in porous media DOI Creative Commons
Mostafa Delpisheh, Benyamin Ebrahimpour,

Abolfazl Fattahi

и другие.

Journal of Materials Chemistry A, Год журнала: 2024, Номер 12(32), С. 20717 - 20782

Опубликована: Янв. 1, 2024

Evaluating the advantages and limitations of applying machine learning for prediction optimization in porous media, with applications energy, environment, subsurface studies.

Язык: Английский

Процитировано

13

Conjunct application of machine learning and game theory in groundwater quality mapping DOI Creative Commons
Ali Nasiri Khiavi,

Mohammad Tavoosi,

Alban Kuriqi

и другие.

Environmental Earth Sciences, Год журнала: 2023, Номер 82(17)

Опубликована: Авг. 9, 2023

Abstract Groundwater quality (GWQ) monitoring is one of the best environmental objectives due to recent droughts and urban rural development. Therefore, this study aimed map GWQ in central plateau Iran by validating machine learning algorithms (MLAs) using game theory (GT). On basis, chemical parameters related water quality, including K + , Na Mg 2+ Ca SO 4 2− Cl − HCO 3 pH, TDS, EC, were interpolated at 39 sampling sites. Then, random forest (RF), support vector (SVM), Naive Bayes, K-nearest neighbors (KNN) used Python programming language, was plotted concerning GWQ. Borda scoring validate MLAs, sample points prioritized. Based on results, among ML algorithms, RF algorithm with error statistics MAE = 0.261, MSE 0.111, RMSE 0.333, AUC 0.930 selected as most optimal algorithm. created algorithm, 42.71% studied area poor condition. The proportion region classes moderate high 18.93% 38.36%, respectively. results prioritization sites GT showed a great similarity between model. In addition, analysis condition critical non-critical based that aspects, carbonate balance, salinity general, it can be said simultaneous use MLA provides good basis for constructing Iran.

Язык: Английский

Процитировано

17

Utilizing machine learning to evaluate heavy metal pollution in the world's largest mangrove forest DOI
Ram Proshad, Md. Abdur Rahim, Mahfuzur Rahman

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175746 - 175746

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

6

Application of Bi-LSTM method for groundwater quality assessment through water quality indices DOI
Wafa F. Alfwzan, Mahmoud M. Selim, Saad Althobaiti

и другие.

Journal of Water Process Engineering, Год журнала: 2023, Номер 53, С. 103889 - 103889

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

12

Particle swarm and grey wolf optimization: enhancing groundwater quality models through artificial neural networks DOI

Soheil Sahour,

Matin Khanbeyki,

Vahid Gholami

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2023, Номер 38(3), С. 993 - 1007

Опубликована: Ноя. 18, 2023

Язык: Английский

Процитировано

12

Predicting Rate Constants of Reactive Chlorine Species toward Organic Compounds by Combining Machine Learning and Quantum Chemical Calculation DOI

Shanshan Zheng,

Wenlei Qin,

He Ji

и другие.

Environmental Science & Technology Letters, Год журнала: 2023, Номер 10(9), С. 804 - 809

Опубликована: Авг. 29, 2023

Reactive chlorine species (RCS), such as (HOCl/OCl–), dioxide (ClO2), atom (Cl•), and dichlorine radical (Cl2•–), play a crucial role in oxidation disinfection worldwide. In this study, we developed machine learning (ML)-based quantitative structure–activity relationship (QSAR) models to predict the rate constants of RCS toward organic compounds by using quantum chemical descriptors (QDs) Morgan fingerprints (MFs) input features along with three tree-based ML algorithms. The ML-based (RMSEtest = 0.528–1.131) outperform multiple linear regression-based 0.772–4.837). Moreover, QSAR combining QDs MFs 0.528–0.948) show better prediction performance than that 0.616–1.875) or alone 0.636–1.439) for all four RCS. SHapely Additive exPlanation (SHAP) analysis reveals energy highest occupied molecular orbital (EHOMO), charge, −O––NH2 −CO are most important affecting This study demonstrates combination achieves much model RCS, which can be extrapolated other oxidants water treatment.

Язык: Английский

Процитировано

11

Groundwater quality assessment using machine learning models: a comprehensive study on the industrial corridor of a semi-arid region DOI

Loganathan Krishnamoorthy,

V. Lakshmanan

Environmental Science and Pollution Research, Год журнала: 2024, Номер unknown

Опубликована: Июль 4, 2024

Язык: Английский

Процитировано

4

Groundwater potential mapping in arid and semi-arid regions of Kurdistan region of Iraq: A geoinformatics-based machine learning approach DOI
Kaiwan K. Fatah, Yaseen T. Mustafa,

Imaddadin O. Hassan

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер unknown, С. 101337 - 101337

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

4