Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181
Опубликована: Июль 1, 2024
Язык: Английский
Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181
Опубликована: Июль 1, 2024
Язык: Английский
International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 33(10), С. 5510 - 5535
Опубликована: Март 30, 2023
Abstract For equation‐error autoregressive moving average systems, that is, Box–Jenkins this paper presents a filtered auxiliary model generalized extended stochastic gradient identification method, multi‐innovation recursive least squares and method by using the filtering idea idea. The proposed methods can be to other linear nonlinear multivariable systems with colored noises.
Язык: Английский
Процитировано
142International Journal of Control Automation and Systems, Год журнала: 2023, Номер 21(6), С. 1780 - 1792
Опубликована: Май 6, 2023
Язык: Английский
Процитировано
111Journal of Computational and Applied Mathematics, Год журнала: 2023, Номер 427, С. 115104 - 115104
Опубликована: Фев. 10, 2023
Язык: Английский
Процитировано
97International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 37(7), С. 1650 - 1670
Опубликована: Апрель 3, 2023
Summary This paper mainly investigates the issue of parameter identification for fractional‐order input nonlinear output error autoregressive (IN‐OEAR) model. In order to avoid problem large computation redundant estimation, form system can be expressed by a linear combination unknown parameters through key term separation. Through employing hierarchial principle, IN‐OEAR model is decomposed into two sub‐models with smaller number parameters. On basis recursive methods, least squares sub‐algorithm and gradient stochastic are proposed estimate fractional‐order, respectively. With aim achieving more accurate estimates, two‐stage multi‐innovation algorithm means theory. The numerical simulation results test effectiveness methods.
Язык: Английский
Процитировано
87International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 34(2), С. 1120 - 1147
Опубликована: Окт. 17, 2023
Abstract This article investigates the parameter identification problems of stochastic systems described by input‐nonlinear output‐error (IN‐OE) model. IN‐OE model consists two submodels, one is an input nonlinear and other a linear The difficulty in that information vector contains unknown variables, which are noise‐free (true) outputs system, approach taken here to replace terms with auxiliary Based on over‐parameterization hierarchical principle, gradient‐based iterative algorithm least‐squares‐based proposed estimate parameters systems. Finally, numerical simulation examples given demonstrate effectiveness algorithms.
Язык: Английский
Процитировано
83International Journal of Control Automation and Systems, Год журнала: 2023, Номер 21(5), С. 1455 - 1464
Опубликована: Март 17, 2023
Язык: Английский
Процитировано
78Journal of Process Control, Год журнала: 2023, Номер 128, С. 103007 - 103007
Опубликована: Июнь 20, 2023
Язык: Английский
Процитировано
78International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 38(1), С. 255 - 278
Опубликована: Окт. 19, 2023
Summary This article proposes a novel identification framework for estimating the parameters of controlled autoregressive moving average (CARARMA) models with colored noise. By means building an auxiliary model and using hierarchical principle, this investigates highly‐efficient parameter estimation algorithm. In order to meet need identifying systems large‐scale parameters, whole CARARMA system is separated into two sets decomposition composition recursive algorithm (i.e., generalized extended least squares or decomposition‐based algorithm) presented. Moreover, analyzes convergence proposed The performance analysis shows that can reduce complexity compared without decomposition.
Язык: Английский
Процитировано
75Annual Reviews in Control, Год журнала: 2024, Номер 57, С. 100942 - 100942
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
72International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 37(7), С. 1827 - 1846
Опубликована: Май 4, 2023
Summary This paper addresses the combined estimation issues of parameters and states for fractional‐order Hammerstein state space systems with colored noises. An extended estimator is derived by using parameter estimates to replace unknown system in Kalman filter. The hierarchical identification principle introduced solve measurement By introducing forgetting factor, an filtering‐based factor stochastic gradient algorithm presented estimate states, fractional‐order. A numerical example respectively demonstrate feasibility proposed algorithm. It can be seen that errors are relatively small, which reflects algorithms have good effect.
Язык: Английский
Процитировано
67