Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering DOI
Huan Xu, Ling Xu, Shaobo Shen

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181

Опубликована: Июль 1, 2024

Язык: Английский

Filtered auxiliary model recursive generalized extended parameter estimation methods for Box–Jenkins systems by means of the filtering identification idea DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 33(10), С. 5510 - 5535

Опубликована: Март 30, 2023

Abstract For equation‐error autoregressive moving average systems, that is, Box–Jenkins this paper presents a filtered auxiliary model generalized extended stochastic gradient identification method, multi‐innovation recursive least squares and method by using the filtering idea idea. The proposed methods can be to other linear nonlinear multivariable systems with colored noises.

Язык: Английский

Процитировано

142

Parameter Estimation for Nonlinear Functions Related to System Responses DOI
Ling Xu

International Journal of Control Automation and Systems, Год журнала: 2023, Номер 21(6), С. 1780 - 1792

Опубликована: Май 6, 2023

Язык: Английский

Процитировано

111

Separable synthesis gradient estimation methods and convergence analysis for multivariable systems DOI
Ling Xu, Feng Ding

Journal of Computational and Applied Mathematics, Год журнала: 2023, Номер 427, С. 115104 - 115104

Опубликована: Фев. 10, 2023

Язык: Английский

Процитировано

97

Joint two‐stage multi‐innovation recursive least squares parameter and fractional‐order estimation algorithm for the fractional‐order input nonlinear output‐error autoregressive model DOI

Chong Hu,

Yan Ji,

Caiqing Ma

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 37(7), С. 1650 - 1670

Опубликована: Апрель 3, 2023

Summary This paper mainly investigates the issue of parameter identification for fractional‐order input nonlinear output error autoregressive (IN‐OEAR) model. In order to avoid problem large computation redundant estimation, form system can be expressed by a linear combination unknown parameters through key term separation. Through employing hierarchial principle, IN‐OEAR model is decomposed into two sub‐models with smaller number parameters. On basis recursive methods, least squares sub‐algorithm and gradient stochastic are proposed estimate fractional‐order, respectively. With aim achieving more accurate estimates, two‐stage multi‐innovation algorithm means theory. The numerical simulation results test effectiveness methods.

Язык: Английский

Процитировано

87

Hierarchical gradient‐ and least‐squares‐based iterative estimation algorithms for input‐nonlinear output‐error systems from measurement information by using the over‐parameterization DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2023, Номер 34(2), С. 1120 - 1147

Опубликована: Окт. 17, 2023

Abstract This article investigates the parameter identification problems of stochastic systems described by input‐nonlinear output‐error (IN‐OE) model. IN‐OE model consists two submodels, one is an input nonlinear and other a linear The difficulty in that information vector contains unknown variables, which are noise‐free (true) outputs system, approach taken here to replace terms with auxiliary Based on over‐parameterization hierarchical principle, gradient‐based iterative algorithm least‐squares‐based proposed estimate parameters systems. Finally, numerical simulation examples given demonstrate effectiveness algorithms.

Язык: Английский

Процитировано

83

Multivariable CAR-like System Identification with Multi-innovation Gradient and Least Squares Algorithms DOI
Jian Pan, Huijian Zhang,

Hongzhan Guo

и другие.

International Journal of Control Automation and Systems, Год журнала: 2023, Номер 21(5), С. 1455 - 1464

Опубликована: Март 17, 2023

Язык: Английский

Процитировано

78

An identification algorithm of generalized time-varying systems based on the Taylor series expansion and applied to a pH process DOI
Yan Ji, Jian Liu, Haibo Liu

и другие.

Journal of Process Control, Год журнала: 2023, Номер 128, С. 103007 - 103007

Опубликована: Июнь 20, 2023

Язык: Английский

Процитировано

78

Decomposition and composition modeling algorithms for control systems with colored noises DOI
Ling Xu, Feng Ding

International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 38(1), С. 255 - 278

Опубликована: Окт. 19, 2023

Summary This article proposes a novel identification framework for estimating the parameters of controlled autoregressive moving average (CARARMA) models with colored noise. By means building an auxiliary model and using hierarchical principle, this investigates highly‐efficient parameter estimation algorithm. In order to meet need identifying systems large‐scale parameters, whole CARARMA system is separated into two sets decomposition composition recursive algorithm (i.e., generalized extended least squares or decomposition‐based algorithm) presented. Moreover, analyzes convergence proposed The performance analysis shows that can reduce complexity compared without decomposition.

Язык: Английский

Процитировано

75

Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea DOI
Feng Ding, Ling Xu, Xiao Zhang

и другие.

Annual Reviews in Control, Год журнала: 2024, Номер 57, С. 100942 - 100942

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

72

Parameter estimation of fractional‐order Hammerstein state space system based on the extended Kalman filter DOI

Yiqun Bi,

Yan Ji

International Journal of Adaptive Control and Signal Processing, Год журнала: 2023, Номер 37(7), С. 1827 - 1846

Опубликована: Май 4, 2023

Summary This paper addresses the combined estimation issues of parameters and states for fractional‐order Hammerstein state space systems with colored noises. An extended estimator is derived by using parameter estimates to replace unknown system in Kalman filter. The hierarchical identification principle introduced solve measurement By introducing forgetting factor, an filtering‐based factor stochastic gradient algorithm presented estimate states, fractional‐order. A numerical example respectively demonstrate feasibility proposed algorithm. It can be seen that errors are relatively small, which reflects algorithms have good effect.

Язык: Английский

Процитировано

67