Groundwater for Sustainable Development, Год журнала: 2024, Номер unknown, С. 101337 - 101337
Опубликована: Сен. 1, 2024
Язык: Английский
Groundwater for Sustainable Development, Год журнала: 2024, Номер unknown, С. 101337 - 101337
Опубликована: Сен. 1, 2024
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2022, Номер 30(6), С. 16036 - 16067
Опубликована: Сен. 30, 2022
Язык: Английский
Процитировано
75Water, Год журнала: 2023, Номер 15(12), С. 2298 - 2298
Опубликована: Июнь 20, 2023
Recently, machine learning (ML) and deep (DL) models based on artificial intelligence (AI) have emerged as fast reliable tools for predicting water quality index (WQI) in various regions worldwide. In this study, we propose a novel stacking framework DL WQI prediction, employing convolutional neural network (CNN) model. Additionally, introduce explainable AI (XAI) through XGBoost-based SHAP (SHapley Additive exPlanations) values to gain valuable insights that can enhance decision-making strategies management. Our findings demonstrate the model achieves highest accuracy prediction (R2: 0.99, MAPE: 15.99%), outperforming CNN 0.90, 58.97%). Although shows relatively high R2 value, other statistical measures indicate it is actually worst-performing among five tested. This discrepancy may be attributed limited training data available Furthermore, application of techniques, specifically values, allows us into extract information management purposes. The interaction plot reveal elevated levels total dissolved solids (TDS), zinc, electrical conductivity (EC) are primary drivers poor quality. These parameters exhibit nonlinear relationship with index, implying even minor increases their concentrations significantly impact Overall, study presents comprehensive integrated approach management, emphasizing need collaborative efforts all stakeholders mitigate pollution uphold By leveraging XAI, our proposed not only provides powerful tool accurate but also offers models, enabling informed strategies.
Язык: Английский
Процитировано
28Groundwater for Sustainable Development, Год журнала: 2024, Номер 25, С. 101168 - 101168
Опубликована: Апрель 5, 2024
Язык: Английский
Процитировано
12Journal of Cleaner Production, Год журнала: 2024, Номер 442, С. 141152 - 141152
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
11Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101309 - 101309
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
9Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
1Chemosphere, Год журнала: 2023, Номер 329, С. 138621 - 138621
Опубликована: Апрель 7, 2023
Язык: Английский
Процитировано
18Environmental Earth Sciences, Год журнала: 2023, Номер 82(17)
Опубликована: Авг. 9, 2023
Abstract Groundwater quality (GWQ) monitoring is one of the best environmental objectives due to recent droughts and urban rural development. Therefore, this study aimed map GWQ in central plateau Iran by validating machine learning algorithms (MLAs) using game theory (GT). On basis, chemical parameters related water quality, including K + , Na Mg 2+ Ca SO 4 2− Cl − HCO 3 pH, TDS, EC, were interpolated at 39 sampling sites. Then, random forest (RF), support vector (SVM), Naive Bayes, K-nearest neighbors (KNN) used Python programming language, was plotted concerning GWQ. Borda scoring validate MLAs, sample points prioritized. Based on results, among ML algorithms, RF algorithm with error statistics MAE = 0.261, MSE 0.111, RMSE 0.333, AUC 0.930 selected as most optimal algorithm. created algorithm, 42.71% studied area poor condition. The proportion region classes moderate high 18.93% 38.36%, respectively. results prioritization sites GT showed a great similarity between model. In addition, analysis condition critical non-critical based that aspects, carbonate balance, salinity general, it can be said simultaneous use MLA provides good basis for constructing Iran.
Язык: Английский
Процитировано
17Groundwater for Sustainable Development, Год журнала: 2024, Номер 25, С. 101101 - 101101
Опубликована: Фев. 2, 2024
Язык: Английский
Процитировано
7Environmental Sciences Europe, Год журнала: 2024, Номер 36(1)
Опубликована: Сен. 2, 2024
Groundwater is a primary source of drinking water for billions worldwide. It plays crucial role in irrigation, domestic, and industrial uses, significantly contributes to drought resilience various regions. However, excessive groundwater discharge has left many areas vulnerable potable shortages. Therefore, assessing potential zones (GWPZ) essential implementing sustainable management practices ensure the availability present future generations. This study aims delineate with high Bankura district West Bengal using four machine learning methods: Random Forest (RF), Adaptive Boosting (AdaBoost), Extreme Gradient (XGBoost), Voting Ensemble (VE). The models used 161 data points, comprising 70% training dataset, identify significant correlations between presence absence region. Among methods, (RF) (XGBoost) proved be most effective mapping potential, suggesting their applicability other regions similar hydrogeological conditions. performance metrics RF are very good precision 0.919, recall 0.971, F1-score 0.944, accuracy 0.943. indicates strong capability accurately predict minimal false positives negatives. (AdaBoost) demonstrated comparable across all (precision: recall: F1-score: accuracy: 0.943), highlighting its effectiveness predicting accurately; whereas, outperformed slightly, higher values metrics: (0.944), (0.971), (0.958), (0.957), more refined model performance. (VE) approach also showed enhanced performance, mirroring XGBoost's 0.958, 0.957). that combining strengths individual leads better predictions. potentiality zoning varied significantly, low accounting 41.81% at 24.35%. uncertainty predictions ranged from 0.0 0.75 area, reflecting variability need targeted strategies. In summary, this highlights critical managing resources effectively advanced techniques. findings provide foundation practices, ensuring use conservation beyond.
Язык: Английский
Процитировано
7