Materials Today Proceedings, Год журнала: 2024, Номер unknown
Опубликована: Апрель 1, 2024
Язык: Английский
Materials Today Proceedings, Год журнала: 2024, Номер unknown
Опубликована: Апрель 1, 2024
Язык: Английский
Materials Today Proceedings, Год журнала: 2023, Номер unknown
Опубликована: Апрель 1, 2023
Increased population growth and industrial development have increased production in various industries, resulting waste production. Increasing consumption of non-renewable resources poses an inherent risk to future generations. In order reduce the these valuable resources, a variety methods can be used, one which is use produced by industries. This research investigated feasibility employing from marble mining byproducts make structural concrete. study replaced percentages with fine aggregates determine their effects on compressive strength, bending impact behavior, water absorption sustainable self-compacting concrete (SCC). Regarding recycled mechanical properties, it has been discovered that substituting sand increase flexural strength. It determined, via testing disk samples, amount steel fibers much greater effect resistance specimens than components. Fiber bridging shown significantly affect final strength containing number blows required for first surface fracture appear fiber-containing specimens. comparison sample served as reference. addition this, increasing replacement percentage causes them loads applied them. examining replacing absorption, was found no specific trend could indentified. Based findings, determined SCC aggregate performed satisfactorily.
Язык: Английский
Процитировано
20Applied Sciences, Год журнала: 2023, Номер 13(15), С. 8889 - 8889
Опубликована: Авг. 2, 2023
The construction industry has witnessed a substantial increase in the demand for eco-friendly and sustainable materials. Eco-friendly concrete containing Ground Granulated Blast Furnace Slag (GGBFS) Recycled Coarse Aggregate (RCA) is such material, which can contribute to reduction waste promote environmental sustainability. Compressive strength crucial parameter evaluating performance of concrete. However, predicting compressive GGBFS RCA be challenging. This study presents novel XGBoost (eXtreme Gradient Boosting) prediction model RCA, optimized using Bayesian optimization (BO). was trained on comprehensive dataset consisting several mix design parameters. assessed multiple evaluation metrics, including Root Mean Squared Error (RMSE), Absolute (MAE), coefficient determination (R2). These metrics were calculated both training testing datasets evaluate model’s accuracy generalization capabilities. results demonstrated that outperformed other state-of-the-art machine learning models, as Support Vector Regression (SVR), K-nearest neighbors algorithm (KNN), RCA. An analysis Partial Dependence Plots (PDP) carried out discern influence distinct input features prediction. PDP highlighted water-to-binder ratio, age concrete, percentage used, significant factors impacting
Язык: Английский
Процитировано
19Journal of Building Engineering, Год журнала: 2023, Номер 76, С. 107351 - 107351
Опубликована: Июль 13, 2023
Язык: Английский
Процитировано
18Construction and Building Materials, Год журнала: 2023, Номер 408, С. 133560 - 133560
Опубликована: Окт. 7, 2023
Язык: Английский
Процитировано
18Asian Journal of Civil Engineering, Год журнала: 2023, Номер 25(2), С. 1921 - 1933
Опубликована: Сен. 15, 2023
Язык: Английский
Процитировано
16Open Engineering, Год журнала: 2024, Номер 14(1)
Опубликована: Янв. 1, 2024
Abstract The development of nanotechnology has led to the creation materials with unique properties, and in recent years, numerous attempts have been made include nanoparticles concrete an effort increase its performance create improved qualities. Nanomaterials are typically added lightweight (LWC) goal improving composite’s mechanical, microstructure, freshness, durability Compressive strength is most crucial mechanical characteristic for all varieties composites. For this reason, it essential accurate models estimating compressive (CS) LWC save time, energy, money. In addition, provides useful information planning construction schedule indicates when formwork should be removed. To predict CS mixtures or without nanomaterials, nine different were proposed study: gradient-boosted trees (GBT), random forest, tree ensemble, XGBoosted (XGB), Keras, simple regression, probabilistic neural networks, multilayer perceptron, linear relationship model. A total 2,568 samples gathered examined. significant factors influencing during modeling process taken into account as input variables, including amount cement, water-to-binder ratio, density, content aggregates, type nano, fine coarse aggregate content, water. suggested was assessed using a variety statistical measures, coefficient determination ( R 2 ), scatter index, mean absolute error, root-mean-squared error (RMSE). findings showed that, comparison other models, GBT model outperformed others predicting compression enhanced nanomaterials. produced best results, greatest value (0.9) lowest RMSE (5.286). Furthermore, sensitivity analysis that important factor prediction water content.
Язык: Английский
Процитировано
6Asian Journal of Civil Engineering, Год журнала: 2023, Номер 24(8), С. 3473 - 3490
Опубликована: Май 30, 2023
Язык: Английский
Процитировано
15Construction and Building Materials, Год журнала: 2023, Номер 408, С. 133684 - 133684
Опубликована: Окт. 11, 2023
Язык: Английский
Процитировано
13Geoenergy Science and Engineering, Год журнала: 2023, Номер 233, С. 212518 - 212518
Опубликована: Ноя. 25, 2023
Язык: Английский
Процитировано
13Journal of Building Engineering, Год журнала: 2023, Номер 83, С. 108393 - 108393
Опубликована: Дек. 30, 2023
Язык: Английский
Процитировано
13