Tracking changes in chlorophyll-a concentration and turbidity in Nansi Lake using Sentinel-2 imagery: A novel machine learning approach DOI Creative Commons
Jiawei Zhang, Fei Meng, Pingjie Fu

и другие.

Ecological Informatics, Год журнала: 2024, Номер 81, С. 102597 - 102597

Опубликована: Апрель 9, 2024

This study represents the first application of Sentinel-2 remote sensing imagery and model fusion techniques to assess chlorophyll-a (Chla) concentration turbidity in Nansi Lake, Shandong Province, China, from 2016 2022. First, we innovatively employed stacking method fuse eight fundamentally different Machine Learning (ML) models, each utilising 20 17 feature bands, resulting development a robust algorithm for estimating Chla Lake. The results demonstrate that Stacking Model has achieved outstanding theoretical generalisation capability. Second, sensitivity extreme value data sample was quantified, found compared with gradient boosting (XGBoost), optimal performance improved by 12%, some extent, it solved problem high-value underestimation low-value overestimation. SHapley Additive exPlanations (SHAP) revealed features such as Three Bands, Enhanced Three, Rrs492/Rrs560, Rrs705/Rrs665 play crucial role concentration. For estimation, Normalized Difference Turbidity Index (NDTI), Rrs705+Rrs560, Rrs865-Rrs740 made significant contributions. Finally, utilised create spatiotemporal maps Lake We analysed causes water quality changes explored driving factors. Compared previous studies, this paper provides new idea monitoring lake parameters using high resolution image precision technology, these can provide reference similar area research decision-making support environment-related departments.

Язык: Английский

Environmental factors for outdoor jogging in Beijing: Insights from using explainable spatial machine learning and massive trajectory data DOI
Wei Yang, Yingpeng Li, Yong Liu

и другие.

Landscape and Urban Planning, Год журнала: 2023, Номер 243, С. 104969 - 104969

Опубликована: Дек. 4, 2023

Язык: Английский

Процитировано

58

Interpretability of simple RNN and GRU deep learning models used to map land susceptibility to gully erosion DOI
Hamid Gholami,

Aliakbar Mohammadifar,

Shahram Golzari

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 904, С. 166960 - 166960

Опубликована: Сен. 9, 2023

Язык: Английский

Процитировано

48

A review of machine learning for modeling air quality: Overlooked but important issues DOI
Dié Tang, Yu Zhan, Fumo Yang

и другие.

Atmospheric Research, Год журнала: 2024, Номер 300, С. 107261 - 107261

Опубликована: Янв. 21, 2024

Язык: Английский

Процитировано

37

Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020 DOI Creative Commons
Ce Xu, Gaoliu Huang, Maomao Zhang

и другие.

Atmosphere, Год журнала: 2024, Номер 15(6), С. 671 - 671

Опубликована: Май 31, 2024

With the ongoing advancement of globalization significantly impacting ecological environment, continuous rise in Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate seasonal variations LST its driving factors using mathematical models. Taking Wuhan Urban Agglomeration (WHUA) as a case study, it explores characteristics employs Principal Component Analysis (PCA) categorize factors. Additionally, compares traditional models with machine-learning select optimal model for this investigation. The main conclusions are follows. (1) WHUA’s exhibits significant differences among seasons demonstrates distinct spatial-clustering different seasons. (2) Compared geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power investigating effects LST. (3) Human Activity (HA) dominates influence throughout year positive correlation LST; Physical Geography (PG) negative Climate Weather (CW) show similar variation PG, peaking transition; Landscape Pattern (LP) weak LST, winter while being relatively inconspicuous summer transition. Finally, through comparative analysis multiple constructs framework exploring features aiming provide references guidance development WHUA regions.

Язык: Английский

Процитировано

28

On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values DOI Creative Commons
Nan Wang, Hongyan Zhang, Ashok Dahal

и другие.

Geoscience Frontiers, Год журнала: 2024, Номер 15(4), С. 101800 - 101800

Опубликована: Фев. 2, 2024

Hydro-morphological processes (HMP, any natural phenomenon contained within the spectrum defined between debris flows and flash floods) are globally occurring hazards which pose great threats to our society, leading fatalities economical losses. For this reason, understanding dynamics behind HMPs is needed aid in hazard risk assessment. In work, we take advantage of an explainable deep learning model extract global local interpretations HMP occurrences across whole Chinese territory. We use a neural network architecture interpret results through spatial pattern SHAP values. doing so, can understand prediction on hierarchical basis, looking at how predictor set controls overall susceptibility as well same level single mapping unit. Our accurately predicts with AUC values measured ten-fold cross-validation ranging 0.83 0.86. This predictive performance attests for excellent skill. The main difference respect traditional statistical tools that latter usually lead clear interpretation expense high performance, otherwise reached via machine/deep solutions, though interpretation. recent development AI key combine both strengths. explore combination context modeling. Specifically, demonstrate extent one enter new data-driven interpretation, supporting decision-making process disaster mitigation prevention actions.

Язык: Английский

Процитировано

24

Integrating prior knowledge to build transformer models DOI Creative Commons
Pei Jiang, Takashi Obi, Yoshikazu Nakajima

и другие.

International Journal of Information Technology, Год журнала: 2024, Номер 16(3), С. 1279 - 1292

Опубликована: Янв. 2, 2024

Abstract The big Artificial General Intelligence models inspire hot topics currently. black box problems of (AI) still exist and need to be solved urgently, especially in the medical area. Therefore, transparent reliable AI with small data are also urgently necessary. To build a trustable model data, we proposed prior knowledge-integrated transformer model. We first acquired knowledge using Shapley Additive exPlanations from various pre-trained machine learning models. Then, used construct compared our Feature Tokenization Transformer other classification tested on three open datasets one non-open public dataset Japan confirm feasibility methodology. Our results certified that perform better (1%) than general Meanwhile, methodology identified self-attention factors is nearly same, which needs explored future work. Moreover, research inspires endeavors exploring

Язык: Английский

Процитировано

23

Exploring the scale effect of urban thermal environment through XGBoost model DOI
Jingjuan He, Yijun Shi, Lihua Xu

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 114, С. 105763 - 105763

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

20

Risk-driven composition decoupling analysis for urban flooding prediction in high-density urban areas using Bayesian-Optimized LightGBM DOI
Shiqi Zhou, Dongqing Zhang, Mo Wang

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 457, С. 142286 - 142286

Опубликована: Апрель 20, 2024

Язык: Английский

Процитировано

19

Estimating the hydrogen adsorption in depleted shale gas reservoirs for kerogens in underground hydrogen storage using machine learning algorithms DOI
Grant Charles Mwakipunda, Mouigni Baraka Nafouanti,

AL-Wesabi Ibrahim

и другие.

Fuel, Год журнала: 2025, Номер 388, С. 134534 - 134534

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

4

A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning DOI Creative Commons
Hao Chen, Yang Ni, Xuanhua Song

и другие.

Agricultural Water Management, Год журнала: 2025, Номер 308, С. 109303 - 109303

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

3