Rainfall prediction in coastal hilly areas based on VMD–RSA–DNC DOI Creative Commons
Xianqi Zhang, Qiuwen Yin, Fang Liu

и другие.

Water Science & Technology Water Supply, Год журнала: 2023, Номер 23(8), С. 3359 - 3376

Опубликована: Июль 31, 2023

Abstract Highly accurate rainfall prediction can provide a reliable scientific basis for human production and life. For the characteristics of occasional sudden changes in coastal hilly areas, this article chooses four cities eastern Zhejiang province as object study establishes model based on variational mode decomposition (VMD), reptile search algorithm (RSA), differentiable neural computer (DNC). The VMD reduces complexity sequence data; RSA is used to find best-fit function; DNC combines advantages recurrent network computational processing improve problem memory forgetting long short-term memory. To verify accuracy model, results are compared with other three models, show that VMD–RSA–DNC has best maximum minimum relative errors 9.62 0.17%, respectively, average root-mean-square error 5.43, mean absolute percentage 3.59%, Nash–Sutcliffe efficiency 0.95 predicting area. This provides new reference method construction models.

Язык: Английский

Daily River flow Simulation Using Ensemble Disjoint Aggregating M5-Prime Model DOI Creative Commons
Khabat Khosravi, Nasrin Fathollahzadeh Attar, Sayed M. Bateni

и другие.

Heliyon, Год журнала: 2024, Номер 10(20), С. e37965 - e37965

Опубликована: Сен. 30, 2024

Accurate prediction of daily river flow (Q t ) remains a challenging yet essential task in hydrological modeling, particularly crucial for flood mitigation and water resource management. This study introduces an advanced M5 Prime (M5P) predictive model designed to estimate Q as well one- two-day-ahead forecasts (i.e. t+1 t+2 ). The performance M5P ensembles incorporating Bootstrap Aggregation (BA), Disjoint Aggregating (DA), Additive Regression (AR), Vote (V), Iterative classifier optimizer (ICO), Random Subspace (RS), Rotation Forest (ROF) were comprehensively evaluated. proposed models applied case data Tuolumne County, US, using dataset comprising measured precipitation (P ), evaporation (E t), . A wide range input scenarios explored predicting , t+1, t+2. Results indicate that P significantly influence accuracy. Notably, relying solely on the most correlated variable (e.g., t-1) does not guarantee robust However, extending forecast horizon mitigates low-correlation variables Performance metrics DA-M5P achieves superior results, with Nash-Sutcliff Efficiency 0.916 root mean square error 23 m3/s, followed by ROF-M5P, BA-M5P, AR-M5P, RS-M5P, V-M5P, ICO-M5P, standalone model. ensemble modeling framework enhanced capability stand-alone algorithm 1.2 %-22.6 %, underscoring its efficacy potential advancing forecasting.

Язык: Английский

Процитировано

18

AI-driven modelling approaches for predicting oxygen levels in aquatic environments DOI Creative Commons
Rosysmita Bikram Singh, Agnieszka I. Olbert, Avinash Samantra

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 66, С. 105940 - 105940

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

10

Research on a multiparameter water quality prediction method based on a hybrid model DOI
Zhiqiang Zheng, Hao Ding, Zhi Weng

и другие.

Ecological Informatics, Год журнала: 2023, Номер 76, С. 102125 - 102125

Опубликована: Май 16, 2023

Язык: Английский

Процитировано

16

Precipitation variability using GPCC data and its relationship with atmospheric teleconnections in Northeast Brazil DOI Creative Commons
Daris Correia dos Santos, Celso Augusto Guimarães Santos, Reginaldo Moura Brasil Neto

и другие.

Climate Dynamics, Год журнала: 2023, Номер 61(11-12), С. 5035 - 5048

Опубликована: Июнь 4, 2023

Abstract The present study investigates the influence of different atmospheric teleconnections on annual precipitation variability in Northeast Brazil (NEB) based data from Global Precipitation Climatology Center (GPCC) 1901 to 2013. objective this is analyze total NEB for 1901–2013 period, considering physical characteristics four subregions, i.e., Mid-north, Backwoods, Agreste, and Forest zone. To teleconnections, GPCC were used, behavior was assessed using Pearson correlation coefficient, Rainfall Anomaly Index (RAI), cross-wavelet analysis. used studied region. RAI calculate frequency patterns drought episodes. analysis applied identify similarity signals between series teleconnections. results according Student's t test showed that Atlantic Multidecadal Oscillation (AMO) exerts a more significant Backwoods region at an interannual scale. In contrast, Pacific Decadal (PDO) greater control over modulation climatic NEB. are insightful reveal differential impacts such as AMO, PDO, MEI, NAO sub-regions circulation strongly interdecadal Mid-north regions, possibly associated with Intertropical Convergence Zone (ITCZ) position. Finally, contributes understanding internal planning water resources agricultural activities Graphic abstract

Язык: Английский

Процитировано

15

Daily air temperature forecasting using LSTM-CNN and GRU-CNN models DOI
İhsan Uluocak, Mehmet Bilgili

Acta Geophysica, Год журнала: 2023, Номер 72(3), С. 2107 - 2126

Опубликована: Дек. 5, 2023

Язык: Английский

Процитировано

14

GHPSO-ATLSTM: a novel attention-based genetic LSTM to predict water quality indicators DOI
Rosysmita Bikram Singh, Kanhu Charan Patra, Avinash Samantra

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер unknown

Опубликована: Март 17, 2024

Язык: Английский

Процитировано

4

Daily streamflow interval predictions up to 30 days ahead based on multi-timescale nested strategy and multi-objective walrus optimizer DOI
Qiannan Zhu, Ping Chang, Tong Zhu

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132646 - 132646

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhancing seasonal streamflow prediction using multistage hybrid stochastic data-driven deep learning methodology with deep feature selection DOI
Asif Iqbal, Tanveer Ahmed Siddiqi

Environmental and Ecological Statistics, Год журнала: 2025, Номер unknown

Опубликована: Фев. 23, 2025

Язык: Английский

Процитировано

0

Prediction of suspended sediment load in Sungai Semenyih using extreme learning machines and metaheuristic optimization approach DOI
Azlan Saleh, Mohd Asyraf Zulkifley

Journal of Environmental Management, Год журнала: 2025, Номер 380, С. 124987 - 124987

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

0

Understanding the effect of long term and short term hydrological components on landscape ecosystem DOI
Gaurav Talukdar, Rajib Kumar Bhattacharjya, Arup Kumar Sarma

и другие.

Ecological Informatics, Год журнала: 2023, Номер 77, С. 102267 - 102267

Опубликована: Авг. 16, 2023

Язык: Английский

Процитировано

9