Knowledge Graph Construction for Automated Automotive Welding Processes DOI

Tingting Deng,

Ting Wang, Jun Wang

и другие.

Опубликована: Окт. 27, 2023

Welding robots are widely used in the automotive welding process, but automated process data of is huge and there problems such as weak relationships lack effective management, so this paper proposes a knowledge graph construction method for process. Firstly, we analyze data, use top-down to construct ontology build on Protégé form conceptual framework Secondly, rule-based extraction transformation algorithm proposed automatically extract entities, attributes from according mapping rules between model structured data. Finally, Neo4j store entity their complete graph. The provides new way organization representation support intelligent research application

Язык: Английский

Navigating the integration of biotic interactions in biogeography DOI Creative Commons
Wilfried Thuiller, Irene Calderón‐Sanou, Loïc Chalmandrier

и другие.

Journal of Biogeography, Год журнала: 2023, Номер unknown

Опубликована: Окт. 3, 2023

Abstract Biotic interactions are widely recognised as the backbone of ecological communities, but how best to study them is a subject intense debate, especially at macro‐ecological scales. While some researchers claim that biotic need be observed directly, others use proxies and statistical approaches infer them. Despite this ambiguity, studying predicting influence on biogeographic patterns thriving area research with crucial implications for conservation. Three distinct currently being explored. The first approach involves empirical observation measurement interactions' effects species demography in laboratory or field settings. these findings contribute theory understanding species' demographies, they can challenging generalise larger scale. second centers inferring associations from co‐occurrences space time. goal distinguish environmental distributions. third constructs extensive potential interaction networks, known metanetworks, by leveraging existing knowledge about ecology interactions. This analyses local realisations networks using occurrence data allows large distributions multi‐taxa assemblages. In piece, we appraise three approaches, highlighting their respective strengths limitations. Instead seeing conflicting, advocate integration enhance our expand applications emerging biogeography. shows promise ecosystem management Anthropocene era.

Язык: Английский

Процитировано

17

The RML Ontology: A Community-Driven Modular Redesign After a Decade of Experience in Mapping Heterogeneous Data to RDF DOI Creative Commons
Ana Iglesias-Molina, Dylan Van Assche, Julián Arenas-Guerrero

и другие.

Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 152 - 175

Опубликована: Янв. 1, 2023

Abstract The Relational to RDF Mapping Language (R2RML) became a W3C Recommendation decade ago. Despite its wide adoption, potential applicability beyond relational databases was swiftly explored. As result, several extensions and new mapping languages were proposed tackle the limitations that surfaced as R2RML applied in real-world use cases. Over years, one of these languages, (RML), has gathered large community contributors, users, compliant tools. So far, there been no well-defined set features for language, nor consensus-marking ontology. Consequently, it become challenging non-experts fully comprehend utilize full range language’s capabilities. After three years work, Community Group on Knowledge Graph Construction proposes specification RML. This paper presents modular RML ontology accompanying SHACL shapes complement specification. We discuss motivations challenges emerged when extending R2RML, methodology we followed design while ensuring backward compatibility with novel which increase expressiveness. consolidates RML, empowers practitioners define rules constructing graphs previously unattainable, allows developers implement systems adherence [R2]RML. Resource type : Ontology/ License CC BY 4.0 International DOI 10.5281/zenodo.7918478 / URL http://w3id.org/rml/portal/

Язык: Английский

Процитировано

14

The Soil Food Web Ontology: Aligning trophic groups, processes, resources, and dietary traits to support food-web research DOI
Nicolas Le Guillarme, Mickaël Hedde, Anton Potapov

и другие.

Ecological Informatics, Год журнала: 2023, Номер 78, С. 102360 - 102360

Опубликована: Ноя. 2, 2023

Язык: Английский

Процитировано

12

A Multimodal Data Fusion and Embedding Attention Mechanism-Based Method for Eggplant Disease Detection DOI Creative Commons
Xinyue Wang, Fengxia Yan, Bo Li

и другие.

Plants, Год журнала: 2025, Номер 14(5), С. 786 - 786

Опубликована: Март 4, 2025

A novel eggplant disease detection method based on multimodal data fusion and attention mechanisms is proposed in this study, aimed at improving both the accuracy robustness of detection. The integrates image sensor data, optimizing features through an embedded mechanism, which enhances model’s ability to focus disease-related features. Experimental results demonstrate that excels across various evaluation metrics, achieving a precision 0.94, recall 0.90, 0.92, mAP@75 0.91, indicating excellent classification object localization capability. Further experiments, ablation studies, evaluated impact different loss functions model performance, all showed superior performance for approach. combined with mechanism effectively model, making it highly suitable complex identification tasks demonstrating significant potential widespread application.

Язык: Английский

Процитировано

0

A vision of human–AI collaboration for enhanced biological collection curation and research DOI Creative Commons
Alan Stenhouse, Nicole Fisher, Brendan J. Lepschi

и другие.

BioScience, Год журнала: 2025, Номер unknown

Опубликована: Март 28, 2025

Abstract Natural history collections play a crucial role in our understanding of biodiversity, informing research, management, and policy areas such as biosecurity, conservation, climate change, food security. However, the growing volume specimens associated data presents significant challenges for curation management. By leveraging human–AI collaborations, we aim to transform way biological are curated managed, realizing their full potential addressing global challenges. In this article, discuss vision improving management using collaboration. We explore rationale behind approach, faced general problems, benefits that could be derived from incorporating AI-based assistants collection teams. Finally, examine future possibilities collaborations between human digital curators collection-based research.

Язык: Английский

Процитировано

0

Edaphobase 2.0: Advanced International Data Warehouse for Collating and Using Soil Biodiversity Datasets DOI
David J. Russell,

Evi Naudts,

Nadia Soudzilovskaia

и другие.

Опубликована: Янв. 1, 2024

Soil and soil-biodiversity protection are increasingly important issues in environmental science policies, requiring the availability of high-quality empirical data on soil biodiversity. Here we present a publicly available warehouse for domain, Edaphobase 2.0, which provides comprehensive toolset storing re-using international sets, following FAIR (Findable, Accessible, Interoperable, Reusable) principles. A major strength is possibility annotating biodiversity with exhaustive geographical, methodological metadata, allowing wide range applications analyses. The system harmonises integrates heterogeneous from diverse sources into standardised formats, can be searched together using numerous filter possibilities, offers exploration analysis tools. features strict transparency policy, quality control, DOIs provided individual sets. database currently contains >450,000 records >35,0000 sites accessed nearly 14,000 times/year. curated by 2.0 greatly aid researchers, conservationists decision makers understanding protecting

Язык: Английский

Процитировано

3

Edaphobase 2.0: Advanced international data warehouse for collating and using soil biodiversity datasets DOI Creative Commons
David J. Russell,

Evi Naudts,

Nadejda A. Soudzilovskaia

и другие.

Applied Soil Ecology, Год журнала: 2024, Номер 204, С. 105710 - 105710

Опубликована: Окт. 28, 2024

Язык: Английский

Процитировано

3

ORCHAMP: an observation network for monitoring biodiversity and ecosystem functioning across space and time in mountainous regions DOI Creative Commons
Wilfried Thuiller, Amélie Saillard, Sylvain Abdulhak

и другие.

Comptes Rendus Biologies, Год журнала: 2024, Номер 347(G1), С. 223 - 247

Опубликована: Ноя. 25, 2024

Recent climate and land use change, pollution have led to concerning alterations in biodiversity ecosystem functions, jeopardizing nature's contributions people. Mountainous regions are not immune these threats, experiencing the impacts of global warming, increased recreational activities, changes agricultural practices. Leveraging natural elevational gradients mountain environments, ORCHAMP program was established 2016 as a comprehensive initiative monitor, understand, predict repercussions environmental on associated functions French Alps Pyrenees.Beyond its monitoring role, has catalyzed development tools for data integration, statistical analyses, visualization, AI-based automated processing predictions. Through combination traditional sampling methods (e.g., botanical surveys) cutting-edge technologies (remote-sensing, DNA, video, acoustic sensors), offers holistic approach understanding how faces changes. By showcasing examples key results, this paper provides an overview ORCHAMP's advancements outlines potential future directions. The broad inclusion diverse techniques treatments positions pioneering effort, paving way long-term insights into dynamics—a crucial step toward effective conservation strategies. Les récents changements en matière de climat et d'utilisation des sols, ainsi que la pollution, ont entraîné altérations préoccupantes biodiversité fonctions écosystèmes, mettant péril les nature aux populations. régions montagneuses ne sont pas à l'abri ces menaces, subissant effets du réchauffement climatique, l'augmentation activités récréatives dans pratiques agricoles. Tirant parti d'altitude naturels environnements montagne, le programme été créé tant qu'initiative globale visant surveiller, comprendre prédire répercussions environnementaux sur écosystémiques associées Alpes Pyrénées françaises.Au-delà son rôle surveillance, promu développement d'outils pour l'intégration données, analyses statistiques, visualisation traitement automatisé données prédictions basées l'IA. Grâce une combinaison méthodes d'échantillonnage traditionnelles (par exemple, relevés botaniques) pointe (télédétection, ADN environnemental, pièges photos capteurs acoustiques), offre approche holistique comment fait face environnementaux. En présentant exemples résultats clés, cet article donne vue d'ensemble avancées d'ORCHAMP esquisse orientations futures potentielles. diverses surveillance figure pionnier ouvre voie compréhension long terme dynamique biodiversité, étape essentielle mise place stratégies efficaces.

Процитировано

2

Beyond the role of climate and soil conditions: Living and dead trees matter for soil biodiversity in mountain forests DOI Creative Commons
Laureline Leclerc, Irene Calderón‐Sanou, Camille Martinez‐Almoyna

и другие.

Soil Biology and Biochemistry, Год журнала: 2023, Номер 187, С. 109194 - 109194

Опубликована: Окт. 4, 2023

Язык: Английский

Процитировано

6

Mountain soil multitrophic networks shaped by the interplay between habitat and pedoclimatic conditions DOI
Irene Calderón‐Sanou, Marc Ohlmann, Tamara Münkemüller

и другие.

Soil Biology and Biochemistry, Год журнала: 2023, Номер 190, С. 109282 - 109282

Опубликована: Дек. 18, 2023

Язык: Английский

Процитировано

6