Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119084 - 119084
Опубликована: Сен. 23, 2024
Язык: Английский
Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119084 - 119084
Опубликована: Сен. 23, 2024
Язык: Английский
Energy, Год журнала: 2023, Номер 290, С. 130146 - 130146
Опубликована: Дек. 27, 2023
Язык: Английский
Процитировано
59International Journal of Hydrogen Energy, Год журнала: 2024, Номер 72, С. 918 - 939
Опубликована: Июнь 1, 2024
Язык: Английский
Процитировано
58International Journal of Hydrogen Energy, Год журнала: 2024, Номер 56, С. 1235 - 1248
Опубликована: Янв. 3, 2024
Язык: Английский
Процитировано
31Energy Conversion and Management, Год журнала: 2024, Номер 305, С. 118249 - 118249
Опубликована: Март 4, 2024
Язык: Английский
Процитировано
26International Journal of Hydrogen Energy, Год журнала: 2024, Номер 100, С. 456 - 465
Опубликована: Дек. 24, 2024
Язык: Английский
Процитировано
26Chinese Journal of Mechanical Engineering, Год журнала: 2024, Номер 37(1)
Опубликована: Май 17, 2024
Abstract The new energy vehicle plays a crucial role in green transportation, and the management strategy of hybrid power systems is essential for ensuring energy-efficient driving. This paper presents state-of-the-art survey review reinforcement learning-based strategies systems. Additionally, it envisions outlook autonomous intelligent electric vehicles, with learning as foundational technology. First all, to provide macro view historical development, brief history deep learning, presented form timeline. Then, comprehensive are conducted by collecting papers from mainstream academic databases. Enumerating most contributions based on three main directions—algorithm innovation, powertrain environment innovation—provides an objective research status. Finally, advance application future plans positioned “Alpha HEV” envisioned, integrating Autopilot energy-saving control.
Язык: Английский
Процитировано
19e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2025, Номер unknown, С. 100914 - 100914
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
5Energies, Год журнала: 2024, Номер 17(13), С. 3059 - 3059
Опубликована: Июнь 21, 2024
This paper provides a comprehensive review of machine learning strategies and optimization formulations employed in energy management systems (EMS) tailored for plug-in hybrid electric vehicles (PHEVs). EMS stands as pivotal component facilitating optimized power distribution, predictive adaptive control strategies, health monitoring, harvesting, thereby enabling the maximal exploitation resources through optimal operation. Recent advancements have introduced innovative solutions such Model Predictive Control (MPC), learning-based techniques, real-time algorithms, approaches, integration fuzzy logic with neural networks, significantly enhancing efficiency performance EMS. Additionally, multi-objective optimization, stochastic robust methods, emerging quantum computing approaches are pushing boundaries capabilities. Remarkable been made data-driven modeling, decision-making, adjustments, propelling to forefront enhanced vehicular applications. However, despite these strides, there remain unexplored research avenues challenges awaiting investigation. synthesizes existing knowledge, identifies gaps, underscores importance continued inquiry address unanswered questions, field toward further PHEV design implementation.
Язык: Английский
Процитировано
14International Journal of Heat and Mass Transfer, Год журнала: 2024, Номер 224, С. 125310 - 125310
Опубликована: Фев. 28, 2024
Язык: Английский
Процитировано
11Applied Energy, Год журнала: 2024, Номер 364, С. 123163 - 123163
Опубликована: Апрель 13, 2024
Язык: Английский
Процитировано
10