Performance and energy-consumption evaluation of fuel-cell hybrid heavy-duty truck based on energy flow and thermal-management characteristics experiment under different driving conditions DOI
Renhua Feng, Jing Yu, Zhichao Zhao

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119084 - 119084

Опубликована: Сен. 23, 2024

Язык: Английский

Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information DOI
Chunchun Jia, Jiaming Zhou,

Hongwen He

и другие.

Energy, Год журнала: 2023, Номер 290, С. 130146 - 130146

Опубликована: Дек. 27, 2023

Язык: Английский

Процитировано

59

A review of the trends, evolution, and future research prospects of hydrogen fuel cells – A focus on vehicles DOI
Ephraim Bonah Agyekum, Flavio Odoi-Yorke,

Agnes Abeley Abbey

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 72, С. 918 - 939

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

58

Model predictive control energy management strategy integrating long short-term memory and dynamic programming for fuel cell vehicles DOI
Ke Song, Xing Huang, Hongjie Xu

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 56, С. 1235 - 1248

Опубликована: Янв. 3, 2024

Язык: Английский

Процитировано

31

Hybrid STO- IWGAN method based energy optimization in fuel cell electric vehicles DOI

D. Viji,

Sanjay Dhanka,

Binda M.B.

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 305, С. 118249 - 118249

Опубликована: Март 4, 2024

Язык: Английский

Процитировано

26

A novel deep reinforcement learning-based predictive energy management for fuel cell buses integrating speed and passenger prediction DOI
Chunchun Jia,

Hongwen He,

Jiaming Zhou

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 100, С. 456 - 465

Опубликована: Дек. 24, 2024

Язык: Английский

Процитировано

26

Reinforcement Learning-Based Energy Management for Hybrid Power Systems: State-of-the-Art Survey, Review, and Perspectives DOI Creative Commons

Xiaolin Tang,

Jiaxin Chen, Yechen Qin

и другие.

Chinese Journal of Mechanical Engineering, Год журнала: 2024, Номер 37(1)

Опубликована: Май 17, 2024

Abstract The new energy vehicle plays a crucial role in green transportation, and the management strategy of hybrid power systems is essential for ensuring energy-efficient driving. This paper presents state-of-the-art survey review reinforcement learning-based strategies systems. Additionally, it envisions outlook autonomous intelligent electric vehicles, with learning as foundational technology. First all, to provide macro view historical development, brief history deep learning, presented form timeline. Then, comprehensive are conducted by collecting papers from mainstream academic databases. Enumerating most contributions based on three main directions—algorithm innovation, powertrain environment innovation—provides an objective research status. Finally, advance application future plans positioned “Alpha HEV” envisioned, integrating Autopilot energy-saving control.

Язык: Английский

Процитировано

19

Transactive Energy Management for Efficient Scheduling and Storage Utilization in a Grid-connected Renewable Energy-based Microgrid DOI Creative Commons
Peter Anuoluwapo Gbadega,

Olufunke Abolaji Balogun

e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2025, Номер unknown, С. 100914 - 100914

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

5

Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review DOI Creative Commons
Ángel Recalde, Ricardo Cajo, Washington Velásquez

и другие.

Energies, Год журнала: 2024, Номер 17(13), С. 3059 - 3059

Опубликована: Июнь 21, 2024

This paper provides a comprehensive review of machine learning strategies and optimization formulations employed in energy management systems (EMS) tailored for plug-in hybrid electric vehicles (PHEVs). EMS stands as pivotal component facilitating optimized power distribution, predictive adaptive control strategies, health monitoring, harvesting, thereby enabling the maximal exploitation resources through optimal operation. Recent advancements have introduced innovative solutions such Model Predictive Control (MPC), learning-based techniques, real-time algorithms, approaches, integration fuzzy logic with neural networks, significantly enhancing efficiency performance EMS. Additionally, multi-objective optimization, stochastic robust methods, emerging quantum computing approaches are pushing boundaries capabilities. Remarkable been made data-driven modeling, decision-making, adjustments, propelling to forefront enhanced vehicular applications. However, despite these strides, there remain unexplored research avenues challenges awaiting investigation. synthesizes existing knowledge, identifies gaps, underscores importance continued inquiry address unanswered questions, field toward further PHEV design implementation.

Язык: Английский

Процитировано

14

Design and investigation of novel gradient flow fields for proton exchange membrane fuel cell DOI

Lang Cai,

C. P. Liang, Caizhi Zhang

и другие.

International Journal of Heat and Mass Transfer, Год журнала: 2024, Номер 224, С. 125310 - 125310

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

11

Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics DOI
Qi Chen, Zhonghong Kuang, Xiaohua Liu

и другие.

Applied Energy, Год журнала: 2024, Номер 364, С. 123163 - 123163

Опубликована: Апрель 13, 2024

Язык: Английский

Процитировано

10