
Applied Artificial Intelligence, Год журнала: 2025, Номер 39(1)
Опубликована: Фев. 2, 2025
Язык: Английский
Applied Artificial Intelligence, Год журнала: 2025, Номер 39(1)
Опубликована: Фев. 2, 2025
Язык: Английский
Energy, Год журнала: 2024, Номер unknown, С. 133265 - 133265
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
9JOIV International Journal on Informatics Visualization, Год журнала: 2024, Номер 8(1), С. 158 - 158
Опубликована: Март 31, 2024
This review article looks at the developing field of artificial intelligence and machine learning in maritime marine environment management. The industry is increasingly interested applying advanced AI ML technologies to solve sustainability, efficiency, regulatory compliance issues. paper examines applications using a deep literature case study analysis. Modeling ship fuel consumption, which impacts operating expenses, top responsibility. demonstrates that approaches such as Random Forest Tweedie models can estimate use. Statistical analysis model beats regarding accuracy consistency. For training testing datasets, has high R2 values 0.9997 0.9926, indicating solid match. Low Root Mean Square Error (RMSE) average absolute relative deviation (AARD) suggest accurately reflects use variability. While still performing well, lower higher RMSE AARD values, suggesting reduced precision consumption prediction. These findings provide light on potential Advanced analytics enables decision-makers analyze patterns better, increase operational decrease environmental impact, thus improving sustainability.
Язык: Английский
Процитировано
8Transportation Research Part C Emerging Technologies, Год журнала: 2024, Номер 166, С. 104755 - 104755
Опубликована: Июль 15, 2024
Язык: Английский
Процитировано
7Computers & Electrical Engineering, Год журнала: 2024, Номер 119, С. 109499 - 109499
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
7Applied Intelligence, Год журнала: 2025, Номер 55(4)
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
1Ocean Engineering, Год журнала: 2025, Номер 320, С. 120309 - 120309
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 141, С. 109769 - 109769
Опубликована: Дек. 2, 2024
Язык: Английский
Процитировано
6Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(8), С. 1351 - 1351
Опубликована: Авг. 8, 2024
The accurate prediction of vessel trajectory is crucial importance in order to improve navigational efficiency, optimize routes, enhance the effectiveness search and rescue operations at sea, ensure maritime safety. However, spatial interaction among vessels can have a certain impact on accuracy models. To overcome such problem predicting trajectory, this research proposes novel hybrid methodology incorporating graph attention network (GAT) long short-term memory (LSTM). proposed GAT-LSTM model comprehensively consider spatio-temporal features process, which expected significantly robustness prediction. Automatic Identification System (AIS) data from surrounding waters Xiamen Port collected utilized as empirical case for validation. experimental results demonstrate that outperforms best baseline terms reduction average displacement error final error, are 44.52% 56.20%, respectively. These improvements will translate into more trajectories, helping minimize route deviations collision avoidance systems, so effectively provide support warning about potential collisions reducing risk accidents.
Язык: Английский
Процитировано
5Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109611 - 109611
Опубликована: Сен. 19, 2024
Язык: Английский
Процитировано
5Ocean Engineering, Год журнала: 2023, Номер 286, С. 115687 - 115687
Опубликована: Авг. 31, 2023
Accurate vessel traffic flow (VTF) prediction can enhance navigation safety and economic efficiency. To address the challenge of inherently complex dynamic growth VTF time series, a new hierarchical methodology for is proposed. Firstly, original data reconfigured as three-dimensional tensor by modified Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) decomposition model. Secondly, matrix (hour ✕ day) each week decomposed into high- low-frequency matrices using Bidimensional Empirical Mode Decomposition (BEMD) model to non-stationary signals affecting results. Thirdly, self-similarities between within high-frequency are utilised rearrange different one-dimensional series solve weak mathematical regularity in matrix. Then, Dynamic Time Warping (DTW) employed identify grouped segments with high similarities generate more suitable tensors. The experimental results verify that proposed outperforms state-of-the-art methods real Automatic Identification System (AIS) datasets collected from two areas. potentially optimise relation operations manage traffic, benefiting stakeholders such port authorities, ship operators, freight forwarders.
Язык: Английский
Процитировано
11